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ABSTRACT 
 
 
 

A COMPARISON OF EQUATION-BASED MODELING WITH BAYESIAN 
NETWORK MODELING FOR ENGINEERING APPLICATIONS 
 
David P. Brown, Ph.D. 
 
George Mason University, 2004 
 
Thesis Director: Dr. Kathryn Blackmond Laskey 
 
 
 
Modeling and Simulation is an important tool in product development.  Current practice 

is to use an equation-based approach.  Equation-based models can require extensive time 

and money to construct high fidelity models that accurately represent the real world.  The 

primary goal of this research is to explore alternate methods of creating accurate models 

and simulations that can be done rapidly and at much lower cost.  The research compared 

engineering modeling applications for time of construction and the accuracy between 

equation-based models and three methods of Bayesian network construction: human 

judgment, formulae and computer-generated.  The derivative method, a multivariate 

approach to discretizing continuous data was proposed and compared to four current 

search and score methods.  The comparison found little difference in performance 

between different methods of discretization; however, the derivative method was faster 

than any of the iterative search and score techniques.  The research software also 

integrated a neural network into the Bayesian network construction.  The neural network 



 

 

strengthens the data set by predicting missing values or areas were data were incomplete.  

Continuous leaf node probability tables were replaced by a distribution of the data that 

fell within the bin plus additional uncertainty if any predictions were included.  The 

comparison found that human judgment Bayesian networks did not perform as well as 

equation-based models.  Bayesian networks created using formulae had approximately 

the same accuracy and time of construction as equation-based models.  Computer-

generated Bayesian networks were both faster (95% confidence) to construct and more 

accurate (95% confidence) than equation-based models.  An important assumption in this 

comparison was that the data to construct the computer-generated network already 

existed.  Computer-generated Bayesian networks were not the optimal choice in every 

case.  To optimize the model construction process, the research developed integration 

software and demonstrated that Bayesian networks and equation-based models could be 

integrated together.  This allowed for greater flexibility in the construction process by 

allowing the option to use which ever type of model was best suited to the circumstances.  

The research also demonstrated that equation-based simulation could be used to train an 

influence diagram which decisions resulted in optimal outcomes.  By demonstrating that 

computer-generated Bayesian network models can be constructed in less time and with 

less human labor, the results of this research have demonstrated that in many cases, there 

is a fast, inexpensive alternative to equation-based modeling. The results of this research 

are expected to benefit many areas of science and engineering where models and 

simulations are essential tools of the trade.



 

1 

1. Introduction 

 

1.1 Modeling and Simulation as a Systems Engineering Tool 

Modeling and Simulation (M&S) is an important tool for performing trade studies 

in systems engineering.  M&S provides designers with the ability to examine a large 

number of virtual designs before constructing a prototype or system.   This provides a 

variety of benefits, including balancing requirements with available funding and 

schedule, determining risk areas, building efficient test plans and reducing test 

requirements.  The aggressive use of modeling and simulation is one of the few systems 

engineering tools that have demonstrated the simultaneous achievement of a better 

product brought to market in less time at a lower cost [DTSE&E, 1996].  M&S should be 

used throughout the life cycle of a system.  A successful M&S program begins with an 

aggressive effort early in concept exploration and definition.  During this period of 

product development, M&S may be the only data available upon which to make decisions 

concerning cost and performance trade-offs as well as other engineering trades.  

However, this currently requires an extensive up-front investment.  Discussions with 

program managers and studies have shown that M&S is not extensively used in smaller 

programs because they do not have the resources to make this investment.  Reducing the 

cost of modeling and simulation so that it becomes affordable for use in smaller programs 
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and product developments would represent a substantial advancement to the field of 

systems engineering.  Additional challenges for systems engineering are the increasing 

complexity of systems and the increasing pressure for interoperability between systems.  

This system-of-systems concept means that almost every system is a subsystem in some 

larger system.  The M&S required to support a system-of-systems concept typically 

requires the integration of large, complex models.  Additionally, there is a drive towards 

reuse of existing models to reduce cost.  Although reuse of M&S can save considerable 

time and money, integration of models built by different companies or organizations that 

were never designed to communicate with each other can pose significant technical 

challenges. 

Five areas have been identified that currently inhibit integration of different M&S 

tools [DTSE&E, 1996].  They are  

• availability of data descriptions 
• security/sensitivity of data 
• lack of equation-based understanding of complex phenomena 
• hardware and software limitations 
• variable resolution  
 

There are ongoing efforts to define data standards.  Efforts are also being made to better 

secure data so that only those who are authorized can access it.  Information technology 

continues to grow at a breakneck pace while software capabilities expand to match 

advances in hardware capability. This research focuses on the remaining two technical 

areas: modeling of phenomena for which equation-based models do not exist and 

integration of models at multiple levels of resolution.  The research will also investigate 
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reducing the high cost and length of time required to build models using current equation-

based modeling techniques. 

1.1 Terms and Definitions 

 For the purpose of this research, the term model is defined as a virtual 

representation of a system, entity, phenomenon or process [Acquisition Functional 

Working Group, 1999].  Models are simplified representations of systems at a particular 

point in time intended to promote understanding of a real system [Bellinger, 2002].  

Models are typically specified as parameterized families.  Setting the parameters to 

different values allows the user to examine the behavior of a particular simplified system 

within the family.  Often a modeler varies parameters in a process called sensitivity 

analysis to examine their impact on model outputs [Morgan et al., 1990].  Models of 

systems that evolve in time are often executed in computer simulations where the 

computer representation consists of a sequence of representations of the system at a 

succession of time points.  The most common examples are training simulators that 

contain a model of a physical system such as a car or aircraft.  In many simulations, a 

human operator can make inputs to the model that cause it to change state over time.  

Thus, a person flying an aircraft simulator is currently at a specific point in the synthetic 

sky at a specific set of parameters such as altitude, airspeed, attitude, etc. because of 

control inputs made in past time.  Inputs made at time present specifies either 

deterministically or probabilistically where the airplane is at any future time.  The time 

within a simulation can either be accelerated or slowed down to better understand 

interactions.  Although modeling and simulation are two different things, they share 
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many common attributes and problems.  When describing issues relevant to both models 

and simulations, this group of virtual representations is referred to as Modeling and 

Simulation (M&S). 

 There are different types of models and simulations.  Most models currently in 

use are equation-based.  An equation-based model uses mathematical expressions to 

describe the real world it attempts to replicate in a virtual environment.  Thus, the first 

requirement to construct an equation-based model is to obtain or develop a set of 

equations that describes to the best of our ability how we believe things in the real world 

work.  Another type of model is a joint probability distribution, typically expressed as a 

Bayesian network [Jensen, 1996].  A Bayesian network represents a set of related random 

variables, which represent properties or features of the world whose values are unknown, 

but for which probabilistic information is available. Each possible configuration of values 

of the random variables represents a possible way the world might be.  Probabilities are 

assigned to these configurations by specifying a local probability distribution for each 

random variable given a small set of random variables that directly influences it.  Model 

inputs are represented as evidence for the random variables corresponding to the inputs.  

A Bayesian network inference algorithm can be used to make probabilistic predictions for 

output random variables given the input random variables. The data required to specify 

the local probability distributions can be obtained empirically from measurement by 

recording the number of times something occurred when specific conditions were 

observed, or by eliciting the probabilities from an expert. 
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 Two other terms used to describe all models and simulations are fidelity and 

resolution.  Fidelity, defined from the Latin roots as faithful, is the level of accuracy with 

which the virtual world of M&S actually represents (or is faithful to) the real world 

[Acquisition Functional Working Group, 1999].  With equation-based models for well-

understood phenomena, the level of fidelity generally represents how many influencing 

variables were taken into account when creating the model. For poorly understood 

phenomena, it may be impossible to construct models with high fidelity. Determining 

how many variables to include and the level of fidelity necessary for the intended use are 

major issues in construction of equation-based models.  Resolution is the degree of 

precision represented by a model or simulation [Davis & Ziegler, 2000].  A model that 

calculates an answer in inches provides more resolution than one providing an answer in 

feet.  Although fidelity and resolution are different concepts, they are related in that they 

must be matched to each other.  Specifying an output to several decimal places in 

resolution is of little use if the model does not have the fidelity necessary to make the 

extra decimal places meaningful.  Alternately, if a quantity is calculated to the nearest 

tenth of an inch but the output is rounded to the nearest foot, the fidelity is lost.  Thus the 

resolution of the output should match the fidelity with which the output was generated. 

1.2 Benefits and Costs of Modeling and Simulation 

Modeling and Simulation is an analysis and control tool in the field of systems 

engineering.  As computer power continues to increase, model builders are able to build 

increasingly more complex and accurate virtual representations of real-world entities 

[Zittel, 1998].  These have provided impressive improvements in product quality, 
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reductions in time to develop products and lower product costs.  Table 1-1 provides a 

summary of these improvements from a study of the use of modeling and simulation in 

both the public and private sectors. 
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Table 1-11 
Measured Benefits of Modeling and Simulation 

 
 
 

Who What Traditional Method New Method with M&S 

TRW Radar Warning 
System Design 

96 man-months 46 man-months 

TARDEC BFV Engineering 
Analysis 

4-6 man-months 0.5 man-months 

TARDEC Low Silhouette 
Tank Design 

55 engineers – 3 years 14 engineers – 16 months

General 
Electric 

Engine Fan 
Blade 

4 weeks A few hours 

Lockheed 
Martin 

Engineering 
Mock-ups 

2100 hours 900 hors 

Lockheed 
Martin 

Changes per 
Final drawing 

4 2 

Lockheed 
Martin 

Physical 
Mock-ups 

$30M each None 

Lockheed 
Martin 

Design 
Verification 

Baseline 30% - 50% reduction 
from baseline 

IBM Computers 10,000 parts 
4 years 

4000 parts 
2 years 

Motorola Cellular devices Baseline 50% reduction in 
product cycle time 

Sikorsky 
Aircraft 

Helicopter External 
Working Drawings 

38 draftsmen 
6 months 

1 engineer 
1 month 

NAVSEA Ship Seakeeping 
Analysis 

27 days 3.5 days 

NAVSEA Radar Cross 
Section Analysis 

57 days 17 days 

Comanche 
Helicopter 
Program 

Source 
Selection 

Prototype Fly-off 
$500M 

Simulator/Surrogate 
Aircraft Fly-off 

$20M 
 

                                                           
1 DTSE&E study (1996) “Study on the Effectiveness of Modeling and Simulation in the Weapon System 
Acquisition Process”, Final Report. 
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As can be seen from these examples, most of the success stories found during this study 

involved large government programs and/or products developed by large corporations.   

Although the benefits of Modeling and Simulation have been demonstrated, these 

benefits come at a steep price.  An aggressive M&S effort requires an extensive up front 

investment.  Development of the Boeing 777, a recognized business success case in 

which M&S played a significant role, required an up front investment of roughly one 

hundred million dollars [Garcia, Gocke & Johnson, 1994].  The M&S core body of 

knowledge states under limitations that “M&S tools are not generally inexpensive and 

require an up-front investment cost” [Acquisition Functional Working Group, 1999].  

This statement is backed up by results of a study looking at the cost of the M&S effort on 

Department of Defense programs summarized in table 1-2. 

 

Table 1-22 
Department of Defense M&S Cost Data 

 
Program Approximate 

Total Program 
Cost 

M&S 
Expenditures to 

date 

% of M&S with 
Cost Data 

LPD-17 $10B $38M 100 
ATACMS/BAT $5B $25.2M 100 

Javelin $4B $48M 100 
AN/BSY-2 $3B $58.3M 100 
SADARM $3B $14.6M 78 

V-22 $37B $50.2M 44 
FAAD C2 $1B $37.6M 40 

 

                                                           
2 Hicks & Associates, Inc., (2001) “Modeling and Simulation Survey Briefing”. 
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This same study chartered by the Department of Defense found that program managers 

do not consider DoD-wide M&S investments as either cost or schedule effective [Hicks 

& Associates, Inc., 2001].  Additionally, small programs simply do not have the 

resources to make this up-front investment [DTSE&E, 1996].  One study found that if 

resources permitted greater use of M&S, small development projects could achieve 

improvements that were comparable to the gains achieved by the larger programs in 

Table 1-1 [Brown, 1999]. 

 If the cost and time to develop M&S tools can be reduced, this would represent a 

large potential improvement in both government and commercial product developments.  

In the United States, 50% of the gross domestic product is generated by small 

businesses.3  Improvements on the scale of those shown in table 1-1 represent an 

enormous untapped potential in product development if modeling and simulation can be 

done more quickly and at lower cost. 

1.3 Why is M&S so Expensive? 

 The high cost and time associated with building equation-based models, even for 

products the equations of which are well understood, can be seen by looking at the 

modeling of a simple system.  The particular case is the building a model for simulating 

the performance of a spring-powered car [Brown, 1999].  The model was constructed for 

use by students taking a course in systems engineering at the Defense Systems 

Management College and was designed to demonstrate the value of modeling and 

simulation when trade-offs are made during the design phase.  The object was to conduct 

                                                           
3 Data from the Small Business Administration website. 
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a series of trades to find a combination of variables that provided good performance for 

only two performance requirements at the lowest cost.  The final equation of motion for 

this simple vehicle had 34 variables and 8 coefficients.  Modeling and simulation of 

complex systems may require an extremely large number of variables and coefficients as 

well as the equations that relate them together. It is highly unlikely that a company 

making spring-powered cars could afford even a tiny fraction of the costs in table 1-2.  

The study in the case then compared a group of students who used the model with a 

control group that did not have access to the model.  The use of M&S in the design phase 

resulted in better performance at lower cost for the same amount of time spent on the 

project [Brown, 1999].  The benefits of using M&S in the design phase of any project, 

regardless of size, are significant.   

 Once any model is built, it must be verified and validated before use [Acquisition 

Functional Working Group, 1999].  Verification tests that the model has been 

implemented correctly, while validation checks to see that the model or simulation 

accurately represents the real world system.  To correctly validate a model, the actual 

system is tested over the range of values that the model or simulation will be used to 

predict.  Any critical areas such as the edges of the operating envelope should be included 

in the validation test data.  The model predictions are checked against the test data.  If the 

model does not agree within specified limits in any area with the test data, further tests 

are conducted to determine the cause of the difference.  These causes are then 

incorporated into the model and the results checked again.  This process continues until 

an acceptable agreement between the test data and the model is obtained.  This explains 
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the finding in the M&S Core Body of Knowledge which states that attempts to create 

high-fidelity models rapidly drive up the cost of a modeling effort [Acquisition 

Functional Working Group, 1999].  The key to wider use of modeling and simulation in 

product development, particularly for smaller projects, is to significantly reduce the time 

and expense of current methods. 

1.4 Probability Models 

The proposed alternative to be explored in this research is to model systems and 

subsystems as probability distributions instead of deterministic equations.  Probability 

distributions can consistently represent different resolutions as they contain not only a 

central tendency, but also a measure of certainty.  Thus a low-resolution model can be 

represented by a distribution with a larger spread to account for the lack of detail in the 

model.  A high-resolution model of the same entity would have the same central tendency 

but less spread in its distribution representing finer detail and more certainty.  Probability 

distributions can be combined through subsystem interaction while maintaining 

consistency that is captured by the central tendency and spread of the final system level 

distribution. 

The proposed tool to model probability distributions is a Bayesian network.  

Bayesian networks encode a complete and coherent probability distribution over many 

variables and can be used to evaluate both causal and evidential influences.  The 

conditional probabilities can be either entered directly or learned from a data set.  

Bayesian networks can be manually constructed by creating nodes that represent the 

variables in a problem and creating arcs representing cause and effect relationships 
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between the variables.  Some advanced Bayesian network packages can learn network 

structure directly from data sets.  Thus, Bayesian networks can model phenomena that 

can be measured or observed but for which equations are not known.  The research will 

explore the use of Bayesian networks for rapid generation of probabilistic models of 

systems and subsystems. 

To effectively use Bayesian networks to model systems and subsystems, they 

must be able to integrate with existing equation-based models.  This integration requires 

two-way data exchange between the Bayesian and equation-based subsystem elements.  

Since Bayesian networks are most frequently used in artificial intelligence applications, 

there is the potential for other benefits to the science of modeling and simulation beyond 

the central research.  Complex systems frequently have humans that must interact with 

the system.  This interaction influences the outcome of dynamic simulations.  Utility and 

decision nodes can also be added to Bayesian networks resulting in influence diagrams 

capable of making decisions.  Utility nodes allow the assignment of value to various 

states of input nodes while decision nodes allow assignment of decision options.  An 

influence diagram is capable of making probabilistic decisions using utility theory.  Thus, 

it should be possible for the equation-based portion of an integrated simulation to 

generate input data to set the node states of a Bayesian network or influence diagram.  

The network could then make a probabilistic inference or optimized decision that could 

be sent back to the equation-based simulation and would then affect the outcome.  By 

soliciting conditional probabilities and utility values from people who would control the 

system in operation, it should be possible to have the influence diagram represent a user 
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or group or users within a computer simulation.  This would allow trade studies in which 

human decision making and human interaction are simulated without the need to have 

humans present. 

Human decision making is currently implemented in many war game simulations.  

A study of implementation finds the majority of systems use a rule-based approach to 

decision making.  The study found that this method is seriously lacking in realism 

because the decision process was too stereotypical, predictable, rigid and doctrine 

limited.  Rule-based programming requires either complete information to make a 

decision or an even larger number of rules to determine how to handle missing 

information.  The same study looked at three areas for improving the representation of 

human decision making within simulations.  These areas were rank-dependent utility, 

multi-attribute utility and game theory.  Rank-dependent utility uses non-linear 

transformations from objective probabilities to decision weights.  Multi-attribute utility 

models the process by which multiple, and often conflicting objectives are traded off 

against each other to make a decision.  Game theory models systems in which multiple 

interacting intelligent agents with conflicting objectives make decisions based on their 

beliefs about the environment and behavior of other agents [Pew and Mavor, 1998].  The 

ability of Bayesian networks and influence diagrams to learn from data sets could also be 

used for system control within a simulation.  The probabilistic relations between nodes 

can be learned from the output of a simulation.  Using utility nodes to define system 

goals, an influence diagram can learn the parameters that resulted in the most favorable 

outcomes.  By structuring the simulation so that a Bayesian network or influence diagram 
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could make decisions that affect the simulation outcome, the influence diagram could act 

as a feedback control system by learning to make decisions that result in outcomes most 

favorable to the goals.  Even if the conditions of the problem undergo adaptive change, 

the network can continue to learn from the outcomes keeping it current.  By contrast, 

rule-based models must be reprogrammed with new rules in response to a changing 

environment.  One German automobile manufacturer is successfully reducing its costs by 

using a large influence diagram to control its production using real time updates of sales 

data to predict the number of parts to be delivered and to forecast the delivery schedule 

[Lerat, 2002].  Bayesian networks are also being integrated with a number of software 

applications.  Intel has released a set of Bayesian network software libraries to assist 

software developers in building machine learning capabilities into their software 

applications [Knight, 2003].  Microsoft has used Bayesian networks for years in their 

Office Assistant and online troubleshooting wizards [Breese and Koller, 1997].  One of 

the most recent applications of Bayesian networks is in filtering Spam Email [Sahami et 

al, 1998].  

1.5 Research Hypotheses 

The objective of the research is to assess empirically how the probabilistic 

modeling approach compares to equation-based models of the same phenomena.  The 

two areas of comparison are the time required to construct each model or simulation and 

the accuracy with which the model or simulation predicts test data of the physical system 

that is virtually represented.  The systems to be tested are listed in table 1-3. 
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Table 1-3 
Evaluation Model Matrix 

 
Appendix NAME 

A Amplifier 
B LRC circuit 
C Wing 
D Elevator control 
E Radar 
F Forward Looking Infrared 

(FLIR) 
G Aircraft Radar Cross Section 
H Loan Application 
I Car Electrical Repair 
J Home Heating System 
K Commuter 
L Air Defense 
M Robotic Vehicle 

 
 
 
The models and simulations are each described in a separate appendix as listed in table 1-

3.  The research hypotheses are as follows: 

Hypothesis #1 
Null hypothesis: Bayesian networks have the same average percent error as equation-
based models. 
Alternate hypothesis: Bayesian networks do not have the same average percent error as 
equation-based models. 
Hypothesis #2 
Null hypothesis: Bayesian networks require less than or equal time to construct compared 
with equation-based models. 
Alternate hypothesis: Bayesian networks require greater time to construct compared with 
equation-based models. 
 

Each of these hypotheses will be tested against three types of Bayesian network models: 

• Manually constructed networks using human judgment for probabilities 
• Manually constructed networks using formulae for probabilities 
• Computer constructed networks using structural and probabilistic learning 

algorithms 
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The goal of the research is to demonstrate that Bayesian networks can be constructed 

more quickly and that these networks will have approximately the same accuracy as an 

equation-based model of the same system or process.  Of the three methods, the computer 

generated networks are expected to have the fastest times of construction.  The research 

will demonstrate that Bayesian networks and equations-based models can be integrated 

together and operate within the same modeling or simulation environment.  Within this 

integrated environment, the research will show that Bayesian networks or influence 

diagrams can make decisions which can be used to control a simulation.
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2. Current Methods of Modeling and Simulation 

 

2.1 Methods of Handling Variability 

 As described in chapter 1, equation-based modeling and simulation is currently 

performed by identifying the relevant dependent and independent variables that 

characterize the behavior of the system and then developing equations that describe how 

they relate to each other.  Input values are identified and the model or simulation is 

executed to provide an output.  This can be demonstrated by looking at a simulation of a 

home heating system shown in figure 2-1. 
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This illustrates a home heating model. The f urnace operates in reponse to the v ariations of  inside 
temperature, responding to the heat loss caused by  the components of  the home and the 
temperature dif f erential between the inside and the outside. Fuel used is also plotted.

 

Figure 2-1 
Home Heating Model4 

                                                           
4 Model provided with the Extend M&S software package.  Original author is unknown. 
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A thermostat controls the inside temperature of the house.  The furnace adds heat when it 

is on, while heat is lost through the roof, walls, doors and windows.  The amount of heat 

loss is also dependent on the outside air temperature.  A single run output over a 24 hour 

period using handbook insulation values and average high and low temperatures for the 

month of January in the Washington DC area is shown in figure 2-2. 

 

Figure 2-2 
Home Heating Simulation Output 

 
As the model is run over a 24 hour period, one can see the variation in outside air 

temperature shown as the sine function in the lower portion of the chart.  The inside air 

temperature is the saw tooth function at the top and the fuel oil consumed is the step 

function going from lower left to upper right.  Using handbook values and average 

temperatures, one would expect this house to use 9.54 gallons of fuel each 24 hours. 

If one were to go to the house shown above and measure the fuel used each 24 

hours, it is highly unlikely one would get a value of precisely 9.54 gallons on any given 
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day.  This is because the output of any system can be heavily dependent on variability in 

the inputs, unmodeled factors and random noise.  It is difficult to control variables 

outside a laboratory environment.  In the home heating model, one can control to some 

extent the variables such as the insulation in the roof, number of doors, windows, etc.  

However, one has no control over the outside air temperature.  If variation cannot be 

controlled, the current practice in M&S is to run a sensitivity analysis on the variables 

[Clemen, 1996].  A sensitivity analysis varies the independent variables over their 

expected range of values in the anticipated operational environment to determine the 

sensitivities (or gradients) with respect to the dependent variables of interest [Arsham, 

2002].  The model or simulation is run multiple times with the variable on which the 

analysis is being performed being incremented by a fixed amount on each run.  The 

analysis begins at either the highest or the lowest value of the sensitivity range and 

continues until the opposite end of the range is reached.  A sensitivity analysis of seven 

variables along with the single solution using point values is provided in figure 2-3. 
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Figure 2-3 

Sensitivity Analysis for Home Heating Model 
 

After the analysis is run, one can ascertain how much impact changes in the 

independent variable have on dependent variables of interest.  As can be seen in figure 2-

3, the example model exhibits a low sensitivity to variability in the heat loss through the 

roof over the expected range of the heat loss variable.  The model exhibits the highest 

sensitivity to outside air temperature.  In this example, the high and low temperatures are 

two variables within the model which cannot be controlled. 

 The current process of M&S sensitivity analysis is flawed when viewed from the 

perspective of probability theory.  If the dependent variables are continuous then there is 

a zero probability of getting the exact answer provided by the model or simulation on any 

one run [Larson, 1969].  This is a highly likely in any engineering problem.  A sensitivity 
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analysis provides a more complete answer by specifying a range over which the answer 

may lie.  However, this answer is incomplete in that it provides no information about 

where within the range the answer is most likely to fall.  The vertical difference between 

the lines of figure 2-3 is provided only for separation to distinguish between the different 

variables plotted on the same chart for comparison.  There are no units on Y-axis of 

figure 2-3.  It also is deficient in the variables are varied one at a time while holding all 

others constant.  This analysis is sufficient in estimating model sensitivities only of the 

effects of the parameters on the model are independent and monotonic [Bankes, 1993].  

No probability or confidence can be attached to the range of even the most sensitive 

variable.  Furthermore, variables that show little sensitivity when varied independently 

may exhibit strong sensitivity when varied in combination with other variables.  Thus, 

running a sensitivity analysis may not capture the true range of the solution space of the 

dependent variables. 

 A review of research literature finds different approaches have been developed to 

address the limitations described above.  Some new modeling packages now allow a 

Monte Carlo sampling to be performed using a distribution function instead of fixed 

incremental steps.  By running the model or simulation multiple times and plotting a 

histogram of the outputs, one can now determine not only the range of possible outcomes 

but also which of these answers are more or less likely to occur.  An example of this 

procedure for the daily low temperature is provided in figure 2-4.  The analysis is done 

for 1000 runs using a normal distribution of temperature with a mean of 20 degrees F and 

standard deviation of 6 degrees F. 
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Figure 2-4 
Monte Carlo Sampling of Daily Low Temperature 

 
One can see from the example of figure 2-4 that the most likely output values lie within 

the center of the range.  Because this method is evaluating one variable at a time, it 

assumes independence between the variables and does not capture correlation between 

variables. 

Another proposed method is to do a pair-wise comparison of all variables with 

each other to determine correlation [Clemen and Really, 1999].  This method would 

identify situations in which two variables are correlated such that one variable either 

positively or negatively impacts the other.  It also identifies if synergistic effects are 

present where two variables acting in combination may result in a dramatically different 

result than either variable separately.  If either condition exists, a sensitivity analysis is 

run varying both variables simultaneously.  An example of a dual sensitivity analysis for 

the daily high and low temperature is provided in figure 2-5. 
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Figure 2-5 

Dual Sensitivity Analysis of Temperatures 
 

For comparison, the individual sensitivities and handbook value solution are also shown.  

As can be seen from figure 2-5, varying the daily high and low simultaneously from the 

low end of each variable range to the high end results in a new sensitivity range.  This 

new range is 76% greater than the greatest individual analysis range.  This method 

provides a more accurate measure of the possible range of outputs.  However, it captures 

only pairs of correlated variables.  If three or more variables are highly correlated as a 

group, this will not be detected and the actual range of responses may be understated.  

Since this method uses incremental steps, it does not provide any indication of where 

within this expanded range the answer is more or less likely to lie. 
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 The most complete method found was the modeling of all variables that exhibit 

variation as random variables [Morgan et al., 1990] [Bankes, 1993].  Each random 

variable is set to a distribution function that describes how the variable behaves.  A 

Monte Carlo method is then used by sampling from each distribution over multiple 

computer runs to obtain a probability distribution of the dependent variables.  This 

provides a complete probabilistic solution to the problem in that all correlations and 

synergistic effects are captured, the complete range of possible outputs is captured, and 

the likelihood of each answer within the range is specified.  The Monte Carlo method has 

linear complexity.  The accuracy of the output distribution is dependent only on the 

number of samples generated and is not dependent on the number of inputs.  The Monte 

Carlo method also allows use of standard statistical techniques to estimate the precision 

of the output distribution.  This allows a small sample set to be run and from this data an 

estimate of the number of total samples required to achieve a desired confidence can be 

calculated.  This can be done using the formula 

m > (2 * c * s / w)2 

where m is the total number of samples required, c is the deviation for the unit normal 

enclosing the probability (distance enclosed by the two-tailed confidence interval of a 

unit normal), s is the standard deviation from the sample and w is the width of the desired 

interval enclosed by the two tailed confidence interval [Morgan et al., 1990]. 

To illustrate Monte Carlo sampling, the home heating model is again used as an 

example.  A distribution is first fit to each of the variables.  An example of the loss factor 

for the doors is shown in figure 2-6. 
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Figure 2-6 

Door Loss Distribution 
 

The handbook value for door losses for doors with weather stripping is 18.  New weather 

stripping would likely have a normal distribution about the handbook value.  The loss 

factor for installed weather stripping will only increase with time as the weather stripping 

and seals crack and wear out from use.  The door loss distribution for an average door is 

therefore assessed as a gamma distribution with most of the values falling to the right of 

the handbook value.  Similar distributions are then set for the roof, walls, and windows.  

The fuel distribution for a Monte Carlo simulation with 1000 runs with probability 

distributions for losses from the roof, walls, doors and windows, the furnace efficiency 

and the daily high and low temperatures is shown in figure 2-7. 
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Figure 2-7 
Monte Carlo Simulation with Probability Distribution of Inputs 

 
The Monte Carlo simulation results in a distribution that is approximately Gaussian for 

fuel consumed with a mean of 10.25 gallons and a standard deviation of 1.29 gallons.  It 

is important to note that the mean of the distribution is higher than the 9.54 gallon answer 

generated using handbook values.  This demonstrates the importance of the distribution 

assigned to the variables.  In this case, the sensitivity analysis showed that the loss was 

likely to become worse over time due to age and wear causing higher average fuel 

consumption in the Monte Carlo simulation.  Some companies such as caterpillar tractor 

currently use this method in the design of their products [Blood, 2001]. 

Although this method provides a complete solution, it does so at a high 

computational cost.  The Monte Carlo method is considered to be a crude or brute force 

technique because of the large number of samples and computational workload to achieve 

the output distribution [Morgan et al., 1990].  Figure 2-8 illustrates computation times for 

the same model using each of the above methods for assessing variability of results.  
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Figure 2-8 
Computer Execution Times for Home Heating Model 

 
Figure 2-8 is plotted using a logarithmic scale because of the large differences in 

execution times.  A single run of this model on a 600 MHz notebook computer takes 0.3 

seconds.  Running either a single or dual sensitivity analysis increases the execution time 

to 6.6 seconds.  However, running a Monte Carlo simulation for either a single or 

multiple variables increases the execution time to 5 minutes for 1000 runs and to 50 

minutes for 10,000 runs.  There is a trade-off using this method between accuracy and 

speed in that generating more runs improves the accuracy of the output distribution while 

increasing the run time to generate the distributions.  Although there was little difference 

between the means and standard deviations between 1000 and 10,000 runs, the maximum 

fuel consumption increased from 17.2 to 19.9 gallons.  Although this may not be 

significant for a heating system trade study, a maximum possible value that is 16% higher 

could be critical for a safety related trade study. 
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2.2 Multi-Fidelity and Multi-Resolution Modeling 

 One trend in the field of M&S is the increased integration of models and 

simulations. As discussed above, cost considerations have led to increasing reuse of 

existing M&S tools in new developments [Hollenbach, 2001] [Konwin, 2001].    There is 

also an increased development of system of system concepts in which systems are 

integrated together to create larger, more complex systems.  This requires the integration 

of different models and simulations that were not designed to interoperate with each other 

[Doyle, 2000].  These models were constructed with fidelities and resolutions as specified 

for their original purpose.  When these different models or simulations are integrated, the 

result is mixed fidelity and mixed resolution.  An analogy to this problem is to calculate 

the area of a room with one person measuring the width with a tape measurer and giving 

you the result to the nearest sixteenth of an inch and the other pacing off the length and 

reporting the result in feet.  The two measurements have very different accuracies with 

respect to the actual lengths and were reported at different resolutions.  The difficulty 

then lies in how to combine these two inputs to estimate the area. 

 A review of literature and phone interviews with experts in this area shows that 

the current approach to multi-fidelity model integration is through interaction at the 

lowest common level [Hollenback, 2000], [Smith, 1999].  In the above analogy, the width 

measurement would be rounded to the nearest foot for the calculation of the area and the 

output would be specified in square feet.  The drawback to this approach is that the 

accuracy from the high fidelity width measurement was completely lost.  The resulting 

answer would only be accurate to plus or minus a square foot. 
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 What is proposed is a probabilistic solution to engineering problems in cases 

where there is mixed fidelity and/or resolution in the input parameters.  Using the earlier 

example of finding the area of a room with two measurements of fidelity and resolution, 

assume that the length and width are two different model elements of different fidelity 

and resolution which must be combined.  Let us further assume that the length is reported 

at 125 3/16 inches and the width at 9 feet.  Using current methods, one would convert the 

length to 10.5 feet and multiply it by 9 feet to get an answer of 94.5 square feet.  Using a 

probabilistic method one would first quantify the accuracy of the measurements.  Let us 

assume that the length is normally distributed with a mean of 125.1875 inches and 

standard deviation of .08 inches while the width is normally distributed with a mean of 9 

feet and standard deviation of 1 foot.  Modeling the length and width as probability 

distributions and calculating the area is shown in the model in figure 2-9.   

 



30 

 

 

 
 

Figure 2-9 
Area Calculation Model 

 
Using this method, the length is converted to feet so that both inputs are in consistent 

units.  Running ten thousand Monte Carlo samples provides an output distribution of the 

dependent variable area as shown below in figure 2-10. 
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Figure 2-10 
Area Calculation Model Output 

 
Since both distributions were normal, the mean value of 93.99 square feet is very near the 

previous answer of 94.5 square feet.  However, figure 2-10 shows that the actual answer 

could take on a wide range of values.  The additional information from a probability 

distribution as an output provides valuable information in engineering applications.  In 

the above example, if one is measuring the area to cover the floor with some type of 

protective coating, then 108 square feet of coverage should be purchased to assure a 90% 

probability of having enough coating to cover the entire floor.
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3. Bayesian Networks and Influence Diagrams 

 

3.1 Network Description 

 Bayesian networks are directed graphs for representing probabilistic dependencies 

among variables [Jensen, 1996].  Bayesian networks encode a complete and coherent 

probability distribution over many variables and can be used to evaluate both causal and 

evidential influences.  A Bayesian network consists of a directed acyclic graph that 

represents dependencies among variables, together with local probability distributions 

defined for small clusters of directly related variables. Directed acyclic graphs consisting 

of nodes which represent the variables and arcs (or directed edges) that describe cause 

and effect relationships or statistical associations between the variables [Jensen, 1996].  

Each variable has a finite set of mutually exclusive states.  The graph may contain no 

directed cycles, or paths that lead from a node to itself and follow the direction of the 

arcs.  Each node is assumed to be conditionally independent of its non-descendents given 

its parents.  An example Bayesian network is shown in figure 3-1
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Figure 3-1 

Example Bayesian Network 
  

Root nodes have no incoming arcs (e.g., nodes “Visit to Asia” and “Smoking”). Child 

nodes have one or more incoming arcs.   

Probability information in a Bayesian network is specified via a local distribution 

for each node. The local distribution for a root node is simply an assignment of a 

probability to each state such that the probabilities sum to 1.  The local distribution for a 

child node is given by a conditional probability table.  This table shows the probability of 

each possible state of the child conditional on each possible state of all of its parents.  

Thus a child node with x states and having y parents also with x states would have a 

conditional probability table with x(y+1) entries.  The joint distribution for all variables in 

the network is given by the product of the local distributions for all the nodes: 

     n 
P(X1,…,Xn) = Π P(Xi | Xpa(i)) 

                i=1 
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where Xpa(i) denotes the parents of variable Xi. 

The conditional probability that variable E takes on value e given that H takes on value h 

is defined by the equation: 

P(E=e|H=h) = P(E=e and H=h) 

A straightforward consequence of this definition is Bayes Rule, a powerful mathematical 

relationship by which probabilities can be modified to incorporate new evidence: 

P(H|E) = P(H) * P(E|H) / P(E) 

The first term, P(H|E) is referred to as the “posterior probability” or the probability of H 

given evidence E.  The term P(H) is the prior probability of H.  The term P(E|H) is the 

“likelihood” and gives the probability of the evidence assuming hypothesis H is true.  

The last term is the probability of E that acts as a normalizing or scaling factor 

[Niedermayer, 1998].  Bayes Rule can also be written in odds likelihood expressed as: 

P(H=h1|E)  =  P(H= h1) P(E| H=h1) 
P(H=h2|E)      P(H= h2) P(E| H=h2) 

The second factor is called the likelihood ratio for h1 versus h2.  This form clearly 

demonstrates that evidence increases the probability of h1 relative to h2 if and only if the 

evidence is more likely under h1 than h2. 

 This can be demonstrated by entering evidence into figure 3-1.  States “No Visit”, 

“Smoker”, “Abnormal” and “Present” are entered into the network as shown in figure 3-

2. 
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Figure 3-2 

Chest Clinic XRay Abnormal 
 

This evidence leads to beliefs of a low probability of Tuberculosis with moderate 

probabilities of Lung Cancer and Bronchitis.  If node “XRay Result” is changed from 

“Abnormal” to “Normal”, the network of figure 3-3 is obtained. 
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Figure 3-3 

Chest Clinic Normal XRay 
 

This single change of evidence results in a new set of beliefs.  There is now a very low 

probability of Tuberculosis or Cancer, and a high probability of Bronchitis. 

 There are three types of nodes that are used in networks: natural, utility and 

decision nodes.  Bayesian networks contain only natural nodes, while influence diagrams 

contain all three types.  Natural nodes are defined by the probability relations of parents 

and children described above.  Natural nodes can be of two types: discrete and 

continuous.  Discrete nodes have a finite or countable number of states typically 

designated by a list of state names for finite state nodes or indexed by integers for 

countable state nodes.  Continuous nodes can take on values of real numbers in a range 

between a lower and upper limit.  This range of numbers can be either a continuous 

function or discretized into bins.  If discretized, the range is divided into a countable 
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number of mutually exclusive, yet continuous bins.  The bin width (or difference between 

the lower and upper limit of each bin) does not have to be the same size for each bin.   

When utility and decision nodes are used in a directed graph representing options, 

probabilities over consequences or utilities over consequences in a decision problem, this 

is referred to as an influence diagram.  Influence diagrams extend Bayesian networks to 

model optimal decision making along with uncertainty about the state of the world.  

Natural nodes represent aspects of the world.  Utility nodes allow the assignment of 

values to each combination of states of its parent nodes. Decision nodes have states that 

represent actions.  These actions can be either intervening actions which cause a state 

change of variables in the model or non-intervening where there is no impact on the 

network model [Jensen, 1996].  Influence diagrams optimize decisions options by 

summing the probabilities of the parents of the utility node times the utility values of 

each decision option.  The highest value represents the optimum decision under the given 

inputs. 

3.2 Bayesian Networks as Engineering Models        

Bayesian networks and influence diagrams have several features that have the 

potential to improve deficiencies identified with equation-based models.  A Bayesian 

network models the relationship between nodes as probability distributions.  Thus, if a 

probabilistic relationship is efficiently computable, a Bayesian network can calculate a 

probability distribution for a dependent variable in a single computation cycle where as a 

Monte Carlo simulation requires many cycles with corresponding high times of 

computation to calculate the same distribution.  Bayesian networks also can calculate an 
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exact answer to a probabilistic query.  The local distributions for a Bayesian network can 

also be specified in more than one way providing additional flexibility.  One method is to 

represent relationships between variables as a formula.  The formula can have random 

components, allowing the expression of parameterized probability distributions.  Thus, 

the equation-based formula approach to model construction can be used if desired when 

defining relationships between nodes. Probability distributions can also be specified by 

eliciting the relations from experts.  These predictions include the type of distribution and 

central tendency.  The certainty the expert assigns to the prediction will be reflected in 

the spread of the distribution.  The relations can also come from test data or observations.  

It is also possible to use a combination of empirical data and informed engineering 

judgment in representing a model [Laskey, 2002]. 

Another advantage of Bayesian networks is their ability to reason under 

uncertainty [Laskey, 2002], or in engineering terms, to generate a plausible model output 

even when some of the inputs are missing.  An equation-based model must have all the 

inputs to solve the equations that drive it.  Bayesian networks can reason from the top 

down or bottom up [Murphy, 2000].  In top down reasoning, the causes are entered and 

the effects are calculated by the network.  In bottoms up reasoning, the effects are entered 

and the network will provide the most likely causes.  One can therefore run the model as 

a normal engineering application where the inputs are entered and the model provides the 

outputs.  The models can also be run in the reverse direction where the outputs are 

entered into the model and the most probable states of the inputs are determined.   
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An example Bayesian network for the area of a room is shown below in figure 3-

4. 

 

Figure 3-4 
Area Probability Model 

 
In this example, the cause and effect relationships are shown by the direction of the arcs.  

Input variables “Length” and “Width” are continuous chance nodes that are inputs to a 

formula in the deterministic continuous node “Area”.  In this example, “Length” is 

defined as a normal distribution of mean 13.0 and standard deviation of 1.0 feet.  “Width” 

is defined as a uniform distribution of minimum 8 and maximum of 12 feet.  “Length” 

has a resolution of one foot while “Width” has a resolution of 0.5 feet.  The distributions 
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and resolutions were chosen to demonstrate the ability to handle different distributions in 

a multi-resolution environment.  Node “Area” is defined by the formula “Length” times 

“Width”.  When the network is compiled, the distribution of node “Area” is calculated as 

shown in figure 3-4.  One can enter values for “Length”, “Width” or both values resulting 

in a probability distribution for “Area”.  Additionally, one can also enter a value for 

“Length” and “Area” and the model will provide the probability distribution for “Width”.  

Such flexibility allows model builders to better understand the results, how the model 

works and how it might be improved [Laskey, 2002].  Equation-based models cannot 

provide solutions to problems with missing data without building a complex set of rules 

for handling missing inputs.  They also can not work in the opposite direction unless the 

entire model is reconstructed. 

Bayesian networks can be constructed using multiple methods.  They can be built 

manually using a graphical interface to generate the nodes, define the states (discrete 

nodes) or bin widths (continuous nodes) and draw the arcs between nodes.  Probabilities 

for each node may then be entered directly into the node probability tables or generated 

from an entered formula.  Bayesian networks can also be constructed using computer 

algorithms.  Network structures can be generated by computer algorithms which learn the 

relationships between variables from data sets.  Some new Bayesian network packages 

such as Hugin, MSBN, Bayesian Network PowerSoft and Kevin Murphy’s MATLAB 

Toolbox are capable of learning structure from data sets.  Computer methods also exist 

for determining the dividing points for bins if discretization of continuous data is 

required.  Most Bayesian network software packages contain the capability to learn the 
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local probability tables from files containing cases generated from the distribution to be 

learned.  This eliminates the need to input these numbers manually when data are 

available.  Research has also been done in the area of learning structure and probabilistic 

relations with missing variables, incomplete data, or both simultaneously [Friedman, 

1998].   

3.3 Limitations of Bayesian Networks 

 Bayesian network theory, inference and software are mature with respect to 

handling of discrete variables.  Theory and software are not nearly as mature with respect 

to continuous variables.  Although there are methods for learning structure directly from 

continuous data, studies have shown that discretizing the data prior to learning the 

structure results in both higher efficiency with respect to learning and greater accuracy of 

the learned network (Monti and Cooper, 1997).  A number of different methods of 

discretization have been proposed.  These methods can be broken down further into the 

following classes: supervised vs. unsupervised, dynamic vs. static, global vs. local, 

splitting (top-down) vs. merging (bottom-up), direct vs. incremental and univariant vs. 

multivariant [Liu et al, 2002].   

 Supervised methods of discretization use class information while unsupervised 

methods do not.  If the network structure is not known, then an unsupervised method 

must be used.  Previous research has shown that supervised methods result in better 

inference and accuracy than unsupervised methods [Liu et al, 2002] [Xu, 2003].  

Dynamic methods use an iterative approach such that information from previous 

calculations is used in calculating the discretization.  Static methods discretize in a single 
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operation.  Dynamic methods can take considerably longer to execute due to the iterative 

nature of the approach.  Global methods discretize data based on the entire structure of 

the network.  Local methods discretize each variable individually in isolation.  For large 

networks, local methods will take much longer to execute since each variable is 

discretized individually.  Splitting methods take the existing intervals of a variable and 

divide it into two new intervals.  Merging methods do the opposite by combining two 

existing intervals into a single one.  Direct methods divide a continuous variable range 

into a number of bins simultaneously.  Incremental methods start with a simple 

discretization and iteratively attempt to improve the discretization using a scoring 

technique.  Incremental methods are time consuming due to their iterative nature.  

Univariant methods discretize each continuous node one at a time.  Multivariant methods 

discretize multiple nodes at the same time.  Multivariant methods take less time as they 

are more efficient. 

Most commercial software packages use unsupervised methods to discretize 

continuous data prior to structural learning.  The two most frequently used methods of 

unsupervised discretization are the equal width and equal frequency methods.  The equal 

width method sorts the data, takes the distance between the minimum and maximum and 

sets the bin widths at equal intervals between the minimum and maximum based on the 

number of bins.  The equal frequency method sorts the data, counts the total number of 

data points and then divides up the bin widths so that an equal number of points are 

placed in each bin.  If the data points are not divisible into a whole number, the last bin 

may contain more or less data than the other bins.  Although unsupervised methods may 
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be adequate for learning of structural relationships between variables, they are inadequate 

for defining the bins of continuous nodes for learning of probabilistic relations from data 

sets.  An example of the performance of two models created using these two 

unsupervised methods using a 10 bin discretization is shown in figure 3-5. 
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Figure 3-5 

Unsupervised Discretization Examples 
 

Although either method provides a reasonable prediction in areas were the data is 

relatively constant (Time > 1.20), both methods provide poor results in areas of rapid 

change (0.00 – 0.80).  Because of this limitation, networks created using uninformed 

discretization methods are unsuitable for use as the basis for comparison to equation-

based models in this research. 
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 A number of supervised methods have been proposed for determining the bin 

dividing points in continuous nodes once the structure has been determined.  These 

include entropy methods such as ID3, D2, MDLP, Contrast and Mantaras Distance.  They 

also include merging methods such as ChiMerge, Chi2, and ConMerge as well as other 

methods such as 1R, Marginal Entropy, Zeta and Adaptive Quantizer (Liu et. al., 2002).  

Two other iterative methods of discretization are the Hill Climbing [Pearl, 1985] and 

Markov Chain Monte Carlo (MCMC) [Gilkes et al., 1996].  All these methods look at 

discretizing a continuous variable by either splitting or merging the cut points based on 

iterative refinement of individual variables. 

A multivariate discretization method using a latent variable model is another 

proposed method for improving discretization [Monti, 1999].  This method discretizes 

continuous data prior to structural learning by using the latent variable to score potential 

relationships between variables and then discretizing on the higher scores.  Although this 

method demonstrated improved structural learning as compared to unsupervised methods 

and direct learning from continuous data, it is computationally complex and would 

appear to be infeasible for very large databases.  The number of possible latent variable 

scores would increase exponentially with the number of variables using this approach.  

Like the merge and split methods, the latent variable model is designed for discretization 

of continuous data for construction of Bayesian network classification models. 

 The approach taken in this research is that if the structure is not known, the data is 

discretized twice.  If the structure is unknown, an unsupervised method must be used for 

the first discretization so that a structural learning algorithm can be used.  However, once 
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the structure is determined, continuous nodes should be discretized again using a 

supervised method to improve performance in the final network, as research has shown 

that supervised methods provide better results as compared to unsupervised methods [Liu 

et al, 2002] [Xu, 2003].  Considering the different methods available, a preferred 

approach to the final discretization to maximize accuracy while minimizing 

computational time would be a supervised, static, global, direct, multivariate approach. 

Another limitation of current Bayesian network software packages is that the 

networks they produce by learning from data sets can not generate a solution for a 

different set of discrete conditions not in the data set.  A network constructed from a data 

set with input resistor values of 1000Ω and 2800Ω would not be able to predict outputs 

with an input of 1800Ω.  Similarly, a Bayesian network model can not interpolate 

between two states.  If training data were provided at intervals of one tenth of a second, 

the model could not interpolate an answer at fifteen hundredths of a second.  If the output 

variable is continuous, the model would provide an answer of whatever bin that value fell 

within.  This is a severe limitation in that for engineering applications, a network could 

not produce an answer for which it did not have training data unless a formula or expert 

prediction were used to create the probability table.  

3.4 Conclusions and Discussion 

Recent advances in Bayesian network research provide some exciting possibilities 

for modeling and simulation of systems.  It may be possible to model systems which can 

be observed but for which the mathematics, relations and all variables are not available.  

Combining structural learning, automatic bin calculation for continuous variables and 



46 

 

probabilistic relation learning, it would be possible to create Bayesian network models 

through computer algorithms with minimal human input.  These attributes are expected to 

save large amounts of time in constructing a model as compared to equation-based 

methods.  Verifying that these attributes exist and quantifying them for both manually 

constructed and computer constructed models is the principal focus of this research.  The 

two principal obstacles that must be addressed to achieve this capability are an efficient, 

accurate method of discretization of continuous nodes once the structure is known and 

developing a method to allow a network to make inferences to conditions not contained 

in the input data set. 
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4. The Derivative Method of Continuous Variable Discretization 

 

4.1 Derivative Algorithm 

Data sets for engineering models typically contain multiple continuous variables 

and mixtures of discrete and continuous variables.  A discretization technique for 

engineering models must be multivariate with the capability to discretize all related 

continuous variables at the same time.  A computationally efficient method that can be 

directly calculated from the data set is proposed in this research.  To illustrate this 

method, a typical discretization problem for two related continuous variables is shown in 

figure 4-1. 
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Figure 4-1 
Example Discretization Problem 

 

In this example there are two continuous variables with the parent node data shown on 

the X-axis and child on the Y-axis.  A manual discretization of these variables would 

place the bin dividing points far apart in areas were the curve is flat (-5 to -2, 2 to 5), and 

closer together where the curve is steep (-2 to 2). 

The derivative method is based on the concept of spacing cut points with respect 

to how much the variables change.  There are two versions of the algorithm: one in which 

the nodes to be discretized have continuous parents or children described in 4.2.1 and one 

in which a continuous node has only discrete parents and/or children described in 4.2.2.  
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The derivative measures the change with one variable with respect to another.  In the 

example above, calculating the derivative of Y with respect to X would result in a 

relatively small number in flat areas of the above curve and a much larger number in 

steep areas.  The derivative method measures the change across the entire data set by 

numerical derivatives of the function and setting bin boundaries so that approximately 

equal amounts of change fall into each of the bins.  Given that variable X contains values 

x1, x2, …, xn and the variable Y contains values y1, y2,…, yn such that X and Y have an 

equal number of points, the derivative at each point is approximately equal to 

Δyi/Δx = (yi+1 – yi-1) / (xi+1 – xi-1) 

for i = 2 to n-1 and  

Δyi/Δx = (yi – yi-1) / (xi – xi-1) 

for i = n. 

At i = 1 the first cut point is established.  All change is then calculated in reference to this 

starting point up to and including the final point at i = n. 

The total amount of change is 

           n 
total change = Σ | Δyi/Δx |. 

        i=2 

The absolute value is required to obtain a measurement of the total amount of change 

irrespective of the direction of change in the data set.  The amount of change to place in 

each bin is defined by 

change per bin = total change / # bins. 

The final step is to find the dividing points that define the bin widths.  This is done by 

summing the absolute values of the derivative at each point.  Each time a derivative is 
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added the sum is checked to see if it has exceeded the change per bin limit.  If it has not 

exceeded the value the next absolute derivative value is added.  If the sum exceeds the 

limit there is a cut point in the interval between the current and last value of x and y.  The 

cut points for x and y are a percentage of the difference between the values of the 

variables before and after the limit was exceeded.  If j is the integer count of the number 

of derivative values that were added when the sum exceeded the change per bin value, 

then the percentage is 

percent = (change per bin – ( current sum – Δyj/Δx)) / (Δyj/Δx). 

The cut points in data sets X and Y are then found by  

xcut = xj-1 + percent * (xj – xj-1) 

and 

ycut = yj-1 + percent * (yj – yj-1). 

The value of the current sum must be reset to the amount in excess of the change per bin 

value: 

current sum = current sum – change per bin. 

The process is now repeated until all the cut points are found. 

 Figures 4-2 and 4-3 show the results of applying the derivative method 

discretization process for five and eight bins respectively. 
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Figure 4-2 

Five-Bin Discretization 
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Figure 4-3 

Eight-Bin Discretization 
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The derivative method is straightforward for this simple case of two variables.  

The more difficult challenge is extending the method to all possible combinations of 

discrete and continuous parents and children.  The derivative method needs only two sets 

of rules to handle all cases: one rule set for continuous variables with either continuous 

parents or children and a second set for continuous variables with only discrete parents 

and children. 

4.1.1 Continuous Nodes with Continuous Parents or Children 

 The derivative method simultaneously discretizes all continuous nodes that are 

related to each other through arcs with other continuous nodes.  An example network is 

provided in figure 4-4.  The first step is to identify all continuous node chains within a 

network.  In the example of figure 4-4, nodes A, D, E, F, G and H are continuous nodes 

while B and C are discrete nodes.   

A

D E F

G

C

H

BA

D E F

G

C

H

B

 

Figure 4-4 
Example Mixed-Node Network 
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There are two continuous chains in the example: A-D-G and E-F-H.  Note that although 

B is a parent of a node in each chain, it is discrete so that it separates the continuous 

groups into two separate chains.  In this example, each chain is discretized separately. 

 Once all the nodes in a continuous chain are identified, the next step is to locate a 

root chain node.  A root chain node has no continuous parents.  In the example network, 

A, E and F are root chain nodes.  A root chain node may or may not be a root node of the 

network.  It is only necessary to identify one root chain node, even though more than one 

may exist.  When taking a derivative, the operation is conducted on the dependent 

variable with respect to the independent variable.  A root chain node is selected as the X 

variable because it is independent of all other nodes in a continuous chain. 

Before the derivatives are calculated, the data set must be placed in the correct 

format.  The data for all continuous nodes in the chain is sorted on the chosen root chain 

node from the lowest to highest numeric value.  Duplicate data points are combined by 

averaging the data for each duplicate value of the root chain node.  This operation serves 

two purposes.  First, it ensures that the derivative process does not break down due to an 

infinite slope.  If a data set contains multiple points for the same value of the root chain 

node X, then the difference in X between data sets would be zero and the derivative ΔY/ 

ΔX would be infinite.  Second, it allows the process to ignore the influence of discrete 

parents and children with arcs to or from the continuous variables in the chain.  If the 

slopes are similar, this can be seen in the example of figure 4-5. 
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Figure 4-5 

Example Data Set 

A Bayesian network model of the system of figure 4-5 contains a continuous variable 

(volts) with three parents (L, R and C) that were sampled as discrete variables and one 

continuous parent (time).  Each of the discrete variables has two states resulting in eight 

total curves.  One variable, L, has no influence on the system, resulting in four distinct 

curves.  The derivative method places an equal amount of change in each bin.  This could 

be done by measuring the derivatives of all eight curves individually and by adding these 

individual derivatives until a cut point is found.  This is accomplished using the formula 

                m   n   o 
total change = Σ Σ Σ | Δyijk/Δx | 

              i=1 j=1k=2 
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where m is the number of all continuous nodes in the chain other than the chosen root 

chain node, n is the number of rows in the CPT table for each continuous node of m and o 

is the number of rows in the data set (number of unique values for the root chain node).  

For complex chains with multiple parents, this presents a lengthy calculation.  If the 

derivatives are all positive or negative values, an alternate method allowing the discrete 

parents to be ignored can be used, greatly simplifying the problem.  This is accomplished 

by using the average value of the dependent variables (all continuous curves in the chain) 

at each point of the independent variable (root chain node).  This results in an alternate 

equation of the form 

     o             m   n 
total change = Σ | Δ((Σ Σ yij/ Σnm) /Δx)k | 

       k=2         i=1 j=1 

 

where the derivative is now calculated at the average value of all the continuous variable 

curves.  An example of this is shown in figure 4-6 by finding the average of the four 

distinct curves of figure 4-5.  For this example, o = 101, m = 1 and n = 4 and Σnm = 4. 
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Figure 4-6 

Average Curve Example 

One can observe from figure 4-6 that the cut points for the average of the four distinct 

curves are the same as if one calculated the derivative for each curve individually and 

then found the cut points by summing all four derivatives at each point in time until the 

cut threshold is exceeded.  This can also be demonstrated mathematically.  The change 

threshold defining a cut point using the individual curves is 

   m  n   o 
threshold = Σ Σ Σ | Δyijk/Δx | / # bins 

     i=1 j=1k=2 

 

while the threshold using the average of the curves is 
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           o            m   n 
threshold = Σ | Δ((Σ Σ yij/ Σnm) /Δx)k | /# bins 

          k=2         i=1 j=1 

 

To define a cut point, the algorithm sums the derivatives until the threshold value is 

exceeded.  For the case where all derivatives are evaluated and having summed x points 

of the independent variable, a check is made to see if the threshold has been exceeded 

using the inequality 

x  m   n                               m   n   o 
Σ Σ Σ | Δyijk/Δx |  <  Σ Σ Σ | Δyijk/Δx | / # bins. 

            k=2 i=1j=1                         i=1 j=1k=2 

 

If at k=x the inequality is true, the next value of k is added until the inequality is false.  At 

that point a cut point is calculated as previously described in section 4.1.  For the case 

where the average of the derivatives is evaluated and having summed x points of the 

independent variable, a check is made to see if the threshold has been exceeded using the 

inequality 

               x            m   n               m            n   o 
Σ | Δ((Σ Σ yij/ Σnm) /Δx)k | <  Σ | Δ((Σ Σ yij/ Σnm) /Δx)k | / # bins. 

         k=2         i=1 j=1                         i=1         j=1 k=2 

 

If the condition that all derivatives are either positive or negative holds true, then 
 
     x              m   n                          x  m   n 

Σ  | Δ((Σ Σ yij/ Σnm) /Δx)k | = 1/ Σnm * Σ Σ Σ | Δ(yij)k/Δx | 
   k=2          i=1 j=1                                                               k=2 i=1 j=1 

 

which states that the absolute value of the average of a set of all positive or all negative 

derivatives is the same as the average of the absolute value of each derivative.  
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Substituting this relation into the average derivative equation and multiplying both sides 

by Σnm, the equation of the average of the derivatives is the same as the equation of the 

individual derivatives.  The algorithm for discretization of continuous chains is presented 

in figure 4-7. 

1. Locate all continuous nodes in the continuous node chain 
2. Identify a continuous root node of the chain 
3. Sort the data in ascending numeric order on the root node 
4. If duplicate values for the same set of input conditions exist for a value of the root 

chain node, average the duplicates 
5. Find the derivative of each node in the chain with respect to the root  

Δyj/Δx = (yj+1 – yj-1) / (xj+1 – xj-1) for j = 2 to m-1 
Δyj/Δx = (yj – yj-1) / (xj – xj-1) for j = m 

6. If all derivatives are positive or negative then  
                                                      o            m   n 
            total change = Σ | Δ((Σ Σ yij/ Σnm) /Δx)k | 
                       k=2          i=1 j=1 

     Else 
                                     m   n  o 
            total change =  Σ Σ Σ | Δyijk/Δx | 
             i=1 j=1k=2 

7. change per bin = total change / #bins 
8. sum = 0 : i = 1 
9. First cut point for each continuous node is the first set of values 
10. sum = sum + | Δyi/Δx | 
11. If sum < change per bin, then i = i +1 and go to 10 
12. percent = (change per bin – ( sum – Δyi/Δx)) / (Δyi/Δx) 
13. xcut = xi-1 + percent * (xi – xi-1) 
14. For continuous node j, ycutj = yi-1j + percent * (yij – yi-1j) 
15. sum = sum – change per bin 
16. If #cut points < bins then go to 10, else go to 17 
17. Last cut point is the highest value of the continuous node + 0.01 * highest value 
18. If more continuous chains exist, go to 1, else stop 
19. If duplicate cut points exist, eliminate the duplicates 

 
Figure 4-7 

Algorithm for Continuous Nodes with Continuous Parents/Children 
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4.1.2 Continuous Nodes with Discrete Parents or Children 

 If a network contains a continuous node that has no continuous children or 

parents, then the method described above must be modified.  The principal concept of 

measuring the change over the entire data set and placing an equal amount of change in 

each bin remains the same.  However, because there are no other continuous variables to 

work with the information contained in the discrete parents and children must be used.  

The derivative method is used to measure state transition changes in the discrete variables 

in relation to the continuous variable.   

Figure 4-8 shows an example network with a continuous variable having no 

continuous parents or children.  This example is created from a database collected from a 

California prison study.  In the study, prisoners are assigned a classification score.  The 

score is based on length of sentence, age, marital status and prior convictions.  Prisoners 

are then assigned to a facility based on the score.  Multiple offenders have higher scores 

and are usually sent to higher security facilities.  The study then recorded if the prisoner 

committed any misconduct violations.  The purpose of the study was to look at the score 

and the level of security of the facility as predictors of misconduct. 
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Figure 4-8 
Prison Classification Network5 

In this example, node “strike” is a discrete node with states “first”, “second” and “third” 

that indicate whether a prisoner is a first, second or third time felon.  Node “score” is a 

continuous node with values from 0 to 79 reflecting the prisoner classification score.  

Node “treat” is a discrete node with states “yes” and “no” indicating whether the prisoner 

was sent to a maximum security facility.  Node “response” is a discrete node with states 

“yes” and “no” indicating whether this prisoner committed any misconduct violations 

while incarcerated.  

To discretize the continuous variable, all parents and children are first identified.  

If a discrete node has states that are not numeric values, the states must be changed to 

numerical values.  The numeric values are ordered such that variable states are assigned 

in the order in which they predominately occur in combination with the continuous 

                                                           
5 Data obtained from the UCLA statistics website at http://www.stat.ucla.edu/projects/datasets/prison.txt 



61 

 

variable.  This is done by calculating the average value of the continuous values for each 

state of the discrete node.  This is accomplished using the formula 

              n 
avgi = Σ statej / n 

              j=1 

  i is the number of states of the discrete node 
  n is the total number of continuous values corresponding to discrete state i  
  statej is the value of the continuous variable at index j 

avgi is the average value of the continuous values in discrete state i 
     
The data is then sorted in ascending numeric order by sorting first on the continuous data 

and then on each parent or child respectively.  Duplicate continuous data points are 

averaged as described in 4.2.1 to prevent an infinite slope.  The derivative at each point is 

then calculated using the same formulae as described above.  The cut points are found 

using the same method.  Applying the derivative method to the example problem above 

for five bins provides the discretization shown in figure 4-9. 
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Figure 4-9 

Five Bin Discretization for Prison Network 
 

As can be seen in figure 4-9, the data is broken into bins by the amount of change.  The 

first bin from 0 to 31 is wide as all three parent/child nodes have relatively constant 

values in this range.  As the data begins to fluctuate further to the right, the bins are 

spaced more closely together.  The outputs for node “response” for input predictors 

“score” and “treat” are shown in figure 4-10. 
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Figure 4-10 

Prison Network Response 
 

As can be seen from the figure, nodes “score” and “response” together are fairly accurate 

predictors of misconduct.  With this discretization, the data shows that for the lesser 

security facilities, higher score does equate with higher misconduct.  For maximum 

security facilities, the probability of misconduct is fairly constant over the range of 

scores.  Misconduct for prisoners at the lower security facilities with low scores is about 

the same as those at maximum security facilities with high scores.  Looking at the raw 

data of figure 4-9, one would conclude that misconduct is not strongly related to score as 

it seems to be fairly constant across the entire range. 
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 The algorithm for discretization of continuous nodes with only discrete 

parents/children is presented in figure 4-11. 

1. Locate the continuous node 
2. Identify all parents and children 
3. If discrete nodes are not numeric values, replace the states with numeric integers 

in ascending order of the average of the continuous values associated with the 
discrete state 

4. Sort the data in ascending numeric order sorting first on the continuous node, and 
then on each parent and child 

5. If duplicate values of the continuous node exist, combine multiple values of the 
other nodes by averaging 

6. Find the derivative of each discrete node with respect to the continuous node  
7. Δyj/Δx = (yj+1 – yj-1) / (xj+1 – xj-1) for j = 2 to m-1 

Δyj/Δx = (yj – yj-1) / (xj – xj-1) for j = m  
n   m 

8. total change = Σ Σ | Δyij/Δx | 
                                                    i=1 j=2 

9. change per bin = total change / #bins 
10. First cut point = lowest value of continuous node 
11. sum = 0 : i = 1    
12. sum = sum + | Δyi/Δx |  
13. If sum < change per bin, then i = i +1 and go to 12 
14. percent = (change per bin – ( sum – Δyi/Δx)) / (Δyi/Δx) 
15. xcut = xi-1 + percent * (xi – xi-1) 
16. For continuous node j, ycutj = yi-1j + percent * (yij – yi-1j) 
17. sum = sum – change per bin 
18. If #cut points < bins then go to 12, else go to 19 
19. Last cut point = highest value of continuous node + .01 * highest value 
20. Stop 
21. If Duplicate cut values exist, eliminate the duplicates 

 
 

 
 

Figure 4-11 
Algorithm for Continuous Nodes with Discrete Parents/Children 
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4.2 Limitations of the Derivative Method 

 The derivative method is very flexible and can accommodate linear, non-linear, 

continuous and discontinuous data sets.  One limitation the method has is with data sets 

that are highly scattered.  Because the method measures the total amount of change 

across a data set and then places an equal amount of change into each bin, poor results 

may occur if the algorithm mistakes a large difference between two closely spaced points 

for a rapid change in the slope.  An example of a data set with high scatter is shown in the 

example of figure 4-12. 
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Figure 4-12 
WF-360TL Infrared Receiver Performance Data 
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 This limitation can be overcome by pre-processing the data prior to using it in the 

derivative method algorithm.  The simplest method is to fit a curve through the data and 

then sample the function of the curve.  This data can be used for input to create the bin 

discretization.  After the network is constructed, the original data is used to learn the 

probabilities of the bin states of the node.  An example of the discretization of a 

logarithmic curve fit through the data is shown in figure 4-13. 
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Figure 4-13 

Cut Points for FLIR Data Set 

Although fitting a curve to the data provides an acceptable solution to overcome this 

limitation, an alternative method that is used in this research is presented in chapter 5. 
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 A second limitation is use with nodes whose data within a continuous node results 

in significantly different functions such as the input data shown in figures A-4 through A-

8 of appendix A.  This is not a limitation of the derivative method, but a limitation of 

Bayesian networks.  A single continuous node can have only one set of ranges defining 

the discretization of that node.  If data within that node is very different with respect to its 

slope, the derivative method will concentrate most of the cut points in areas such as a 

non-linearity while placing few cut points in linear areas of more gradual change.  This 

results in very low resolution in the linear areas with corresponding poor performance.  If 

this condition exists, an alternative approach is to group the data into sets where the 

response is similar and to create different models for different sets of data.  This method 

is used for the amplifier model of appendix A which had both linear and non-linear inputs 

and outputs. 

4.3 Substituting Probability Distributions into Continuous Node Tables 

 Another issue that must be addressed is the impact of the number of bins on the 

accuracy of the answer.  As an example, the electrical circuit shown in figure B-1 of 

appendix B is tested for values of R = 1.8KΩ, C = 100μF and Time = 0.   Figure 4-14 

provides a normal distribution of the results of 26 tests. 
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Figure 4-14 

LRC Test Data Distribution 
 

From this data the 95% confidence interval is between 7.1 and 9.2 volts.  The average test 

data shown in figure 4-5 of eight different circuit configurations is used for Dirichlet 

learning of node probabilities in the network provided in figure 4-15.  A ten bin 

discretization using the derivative method is used to create the network.  The software 

adds one bin from negative infinity to the lower cut point and a second from the highest 

cut point to infinity.  The addition of these bins is explained in chapter 6. 



69 

 

L
25
100

50.0
50.0

62.5 ± 38

Time
< 0
0 to 0.021
0.021 to 0.0482
0.0482 to 0.0808
0.0808 to 0.122
0.122 to 0.176
0.176 to 0.248
0.248 to 0.356
0.356 to 0.534
0.534 to 0.875
0.875 to 2.02
>= 2.02

   0
 100
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

R
1000
1800

   0
 100
1800

Volts
< 0.343
0.343 to 1.12
1.12 to 1.93
1.93 to 2.74
2.74 to 3.56
3.56 to 4.39
4.39 to 5.22
5.22 to 6.07
6.07 to 6.9
6.9 to 7.76
7.76 to 9.19
>= 9.19

6.25
6.25
6.25
6.25
6.25
6.25
6.25
6.25
6.25
18.8
18.8
6.25

C
100
330

 100
   0
100

 

 
Figure 4-15 

Dirichlet Learning with Uniform Prior 
 

This results in a poorly performing network returning a mean of 5.37 for the node 

“Volts”.  As can be seen in figure 4-15, this number is not in either bin with the highest 

probability (6.9 - 7.76 or 7.76 - 9.19).  This is because the learned network contains 

substantial probability on values less than 6.9 volts, although under a Gaussian 

distribution such values are extremely rare.  This happens because the learning algorithm 

assumes the observations are multinomial and the prior distribution is uniform, resulting 

in a Dirichlet posterior distribution.  The posterior bin probability is: 

bin probability = Ndata / Ntotal + 1 
         Ndata is the number of data points that fall within a bin 
         Ntotal is the total number of data points. 
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The one is added to the denominator of all bins as a uniform prior assumes each bin has 

an equally likely probability prior to the introduction of the data set.   

In figure 4-15, there are four values of node “Volts” that fall into the time range 

of 0.0 - 0.021 and have parents R = 1.8KΩ and C = 100μF.  Two values fall within bin 

6.9 - 7.76 and two fall within bin 7.76 - 9.19.  There are 12 bins that each start with one 

value in that bin.  Before learning begins, the probability distribution is uniform with a 

probability of 1 / 12 (0.083) for each bin.  After learning of the four data points, the 

probability is (1 + 2) / (12 + 4) or (0.188) for both bins 6.9 - 7.76 and 7.76 - 9.19.  The 

probability is 1 / (12 + 4) or (0.0625) for all other bins.  For a given number of data 

values as the number of bins is increased, the probability within each bin that contains 

data decreases and the total probability in all bins which contain no data increases. 

 There are three possible ways that were considered to correct this problem.  The 

first consideration is to conduct many more tests to obtain enough data points to reduce 

the probabilities in the bins that contain no data values.  However, extensive testing 

would be both time consuming and expensive and would negate any advantages to using 

Bayesian networks for modeling.  A second option is to assign higher confidence to the 

data set by increasing the number of times that each point is counted during the Bayesian 

learning process.  If the network of figure 4-15 relearns the probability tables from the 

learning case file data counting each case one hundred times, the resulting probability for 

the node “Volts” is shown in figure 4-16. 
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Figure 4-16 
Dirichlet Learning with Non-Uniform Prior 

 
Applying the same parent conditions now results in a mean value of 7.8 for node “Volts”.  

This results in improved performance with the mean value now within one of the bins 

with the highest probability (7.76 – 9.19).   Although improved, this option does not 

provide a completely satisfactory answer.  Based on the data, it is not likely that the 

probability of a value in bin 6.07 – 6.9 is the same as the probability of having a value in 

bin <0.343.  The probability should be much higher in the former as compared to the 

latter. 

 Learning performs so poorly because the learning algorithm does not make use of 

all the information we have about the data.  Specifically, the Dirichlet/Multinomial 
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learning algorithm applies to categorical data, while these data are continuous and known 

to be nearly Gaussian in their distribution.  The third method increases statistical power 

by including this information.  For this research, this is implemented by overwriting the 

CPT table of the continuous node with a normal distribution obtained from the data set 

when the data is expected to be normally distributed.  To replace the distribution, the 

mean and standard deviation are calculated for all data of a node for a single set of input 

states.  In the circuit network example for R = 1.8KΩ, C = 100μF and continuous node 

“Time” bin 0.0 – 0.021 there are four values of “Volts” (two at time 0.0 with values of 

8.60 and 8.61 and two at time 0.02 with values of 7.63 and 7.66) with mean 8.12 and 

standard deviation 0.50.  The cumulative normal distribution is then calculated at each of 

the bin cut points.  For the first bin (all values less than the first cut point) the probability 

is the cumulative normal distribution at the lowest point.  For all but the last bin the 

probability is the cumulative normal distribution at the upper cut point minus the 

cumulative normal distribution at the lower cut point.  For the final bin (all values greater 

than the highest cut point) the probability is one minus the cumulative normal probability 

at the highest cut point.  This ensures that all probabilities for each row of the CPT table 

sum to one.  An example of the node Volts using this method is shown in figure 4-17. 
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Figure 4-17 
Normal Distribution Continuous Node 

The value of node “Volts” at the reference conditions is 8.23 + 0.66.  This is very close to 

the mean of 8.12 of the data.  As can be seen in figure 4-17, the lower bins now have zero 

probability and therefore no influence on the output.  Use of this method allows 

discretization of continuous nodes using a higher number of bins to obtain higher model 

resolution without loss of accuracy.  Either methods two or three will be used in this 

research. 

 4.4 Comparison of Discretization Methods 

Recent research compared two search methods and two scoring methods for both 

time and accuracy [Xu, 2003]. The search methods were Hill Climbing (HC) [Pearl, 
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1985] and Markov Chain Monte Carlo (MCMC) [Gilks et al., 1996].  The scoring 

methods were Minimum Description Length (MDL) [Friedman and Goldszmidt, 1996] 

and Bayesian Dirichlet (BD) [Heckerman et al, 1995].  Combining the combinations of 

searching and scoring, this resulted in four different methods for the discretization 

process: Hill Climbing Minimum Description Length (hcmdl), Hill Climbing Bayesian 

Dirichlet (hcbd), Markov Chain Monte Carlo Minimum Description Length (mcmdl) and 

Markov Chain Monte Carlo Bayesian Dirichlet (mcbd).  The software to implement these 

four methods was written in MATLAB®. 

The derivative method was compared to each of these four methods by means of 

two scoring metrics and the time it took the discretization algorithm to execute.  The 

comparison was conducted on four data sets: the cycle amplifier data of appendix A, the 

LRC circuit data of appendix B, the aerodynamic wing lift data of appendix C and the 

California prison study data of section 4.1.2.  The prison data contained only one 

continuous node, while all others contained more than one continuous node.  Data were 

separated into mutually exclusive training data sets and test data sets.  Three sets of 

training data and test data were constructed for each data set.  The test set was determined 

by a random number generator which selected approximately 10% of the total data from 

each set.  If data sets were ordered, the selection was made so as to evenly sample the test 

cases over the data set.  This was done by randomly sampling equal numbers from equal 

time intervals on the amplifier and LRC data sets and sampling one angle-of-attack for 

each wing shape.  Discretization was first conducted using the comparative methods 

which determine the number of bins using a user supplied maximum number and their 
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respective scoring techniques for merging or splitting the data.  The data were then 

discretized using the derivative method using the number of bins determined by the 

comparative method.  All data runs were conducted on a 3.07 GHz computer with a 

Pentium 4 processor and 1.0 GB of RAM. 

The comparison was conducted by first using the training data set to calculate the 

probabilistic relations between variables.  The networks were then tested with the test 

data set and scored using two methods: Log Loss and Spherical Gain.  The equations for 

these network scoring metrics are: 

Log Loss = MOAC * (-log (Pc)) 
                                              n 

Spherical Payoff = MOAC * (Pc / (∑ Pj
2)) 

                                              j=1 

where Pc is the probability predicted for the correct state, Pj is the probability predicted 

for state j, n is the number of states and MOAC is the mean average over all cases6.  The 

comparison attempted to use inputs of a maximum of 10 bins for each method and 25 

iterations per discretization cycle.  These numbers caused the computer to hang up and 

freeze for the wing and prison data sets.  Because no error message was generated, it is 

suspected that the problem is linked to the large size of the network and file for these two 

data sets (wing has a variable with 5 parents and prison has 3917 cases in the data set).  

Successful discretizations were obtained by reducing the maximum number of bins to 5 

and the maximum number of iterations to 10.  The Log Loss comparison for the test cases 

is presented in figure 4-18 and the Spherical Payoff in figure 4-19. 

                                                           
6 Definitions from the Netica User’s Manual. 
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Figure 4-18 

Log Loss Comparison of Discretization Methods 
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Figure 4-19 

Spherical Payoff Comparison of Discretization Methods 
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The results of this comparison confirm results from another study that indicate that 

different methods of discretization have different results on different types of data sets 

[Lui et al, 2002].  The results of this comparison show differences between the methods 

on individual data sets, but the average of the four cases for each method is nearly the 

same for both scoring metrics.  Based on the test cases, the derivative method 

demonstrates approximately the same performance as compared to the four other 

methods. 

 The time required to execute the discretization algorithms was recorded for each 

method.  The logarithmic plot of time is presented in figure 4-20. 
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Figure 4-20 
Time Comparison of Discretization Methods 
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The results agree with a previous study that Markov Chain Monte Carlo methods take 

longer than Minimum Description Length [Xu, 2003].  In all cases the derivative method 

was faster than either of the other comparative methods.  The magnitude of the difference 

can not be directly compared from figure 4-20 in that the comparative methods were run 

in MATLAB® while the derivative method was run in Microsoft Visual Basic®.  Because 

the derivative method was running in a compiled program while the comparative methods 

were not, some of the speed difference must be attributed to the difference between the 

two programs.  However, the magnitude of the difference is too great to be related only to 

the differences in code, and a conclusion can be made that the derivative method is faster 

than any of the other four methods.  Further research is required to determine the exact 

magnitude of this difference.  

4.5 Discussion 

 The derivative method of discretization was developed when a review of 

published methods found none suitable for use in the discretization of continuous data for 

Bayesian network engineering models.  The methods reviewed either provided poor 

results during initial research or were deemed too complex and inefficient to provide a 

viable alternative for comparison to equation-based models.  As such, the development of 

the derivative method is a by-product of this research effort.  Based on a limited 

comparison to a small sample of other methods, this dissertation will not attempt to prove 

that this method is superior to any other published method or is optimally implemented as 

described in this chapter.  However, the results obtained using this approach and 
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described in chapter 7 demonstrate this method has strong potential.  There are a number 

of follow-on research projects that should be considered. 

 Although the method is computationally efficient, it may not produce the best 

discretization of data sets that can be obtained.  The method always results in the same 

number of bins for every node in a continuous chain unless duplicate cut points exist.  A 

better discretization may exist by allowing different nodes to have different numbers of 

bins.  A potential follow-on research effort might look at using the derivative method 

using a large number of bins to create a starting discretization, and then using published 

merge methods to see whether a better discretization can be achieved with fewer bins.  

This might improve the time to converge to a solution for merge methods by providing a 

better starting point. 

 Different implementations of the derivative method rules should also be explored.  

The current implementation is to use equal-weighted averages for duplicate values of the 

same X variable.  An alternate approach would be to explore the use of probability 

weighted averages.  The method currently uses a manual input to determine the number 

of bins for data discretization.  This was useful for the research in that in most cases, a 

fixed number of bins was desired for comparison of different modeling techniques.  

Finding a method to determine the number of bins for the derivative method is another 

area that should be explored.  Automatic calculation of number of bins to achieve a given 

accuracy would be one selection criterion.  Development of metrics which would 

minimize the number of bins for some criterion such as accuracy or resolution should 

also be considered. 
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It has been shown that informed methods of discretization provide better 

structural learning than uniformed methods [Monti, 1999].  The current implementation 

uses uniformed methods for initial discretization before structural learning, and then uses 

an informed method to discretize the data again once the structure has been determined.   

This may result in a good discretization of variables in a less than optimum structure.  

The software as implemented is computationally efficient and executes relatively quickly.  

An interesting area for future research would be to look at an iterative approach to 

structural learning where the informed discretization data is used to relearn the structure 

and then the data is discretized again on the new structure.  The process would continue 

until it converges on one or more structures.
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5. Building Models When Data are Incomplete 

 

5.1 Adjusting Data Sets for Missing or Incomplete Data 

When learning node probabilities from data sets, the quality of the final network 

will be influenced by the quantity and completeness of the data.  Unfortunately, model 

builders may not have the luxury of ordering custom data sets and frequently must work 

with what is currently available.  These data sets may contain cases in which the 

measurement was missed or was unavailable.  Measurement of the data might have 

resulted in high concentrations of data in some areas with a scarcity of data in other areas 

of interest.  Engineering trade studies frequently need data for configurations which have 

never been built or tested.  To be useful as an engineering modeling tool, Bayesian 

networks must be able to model responses for conditions which have not been previously 

measured.  In all of these situations, there is a need to generate predictions for missing or 

incomplete data. 

There are a number of manual techniques that could be applied to augment the 

database.  Adjustment by human judgment is one method that is specifically evaluated in 

this research.  A second method is the use of computer predictions to augment the 

database.  A computer algorithm creates a model of the available data and then uses the 

model to generate predictions.  This method is referred to as “borrowing of strength” 

which refers to the use of available data to make predictions where data are sparse [Kreft, 
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1996]. This method is currently used in some predictive applications by the U.S. Census 

Bureau [Judson, 2002]. 

In order to make the predictions, a regression model must be created for the node 

or nodes for which values are needed conditional on their parents.  Such a regression 

model would express a probability distribution of the node as a parametric function of its 

parents.  The most common type of regression model consists of a deterministic function 

plus a normally distributed random noise term with zero expectation and standard 

deviation (σ).  This can be expressed as 

y = f(x,θ) + N(0,σ2) 
y is the variable of interest 
f(x,θ) is the equation conditional on the parent states x and θ 
N(0,σ2) is the noise component normally distributed about mean 
zero 

 
There are many methods that can be used to estimate the parameters of this regression 

model.  One method would be to fit a curve through the data.  This is an acceptable 

approach as long as all data for a node consists of continuous linear functions.  

Unfortunately, this is not the case for many engineering applications.  Real data may be 

discontinuous such as the input data shown in figure A-9, or non-linear as shown in the 

input data of figure A-10 of appendix A.  Attempts to fit curves to these data sets would 

result in a poor representation of the data set and consequent inaccurate predictions.  In 

order to handle discontinuous or non-linear data, the approach taken in this research is to 

use a neural network to create a semi-parametric regression model of the available data.  

This model is then used to impute missing values for random variables. 
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5.2 Neural Networks 

The principal advantage of a neural network is that it is capable of adaptive 

learning of very complex problems (Maren, 1990).  Because this research effort is 

looking at alternatives to equation-based modeling, the ability to make predictions 

without creating equations to describe variable relations satisfies the research goals.  

These networks can predict additional values within the range of the training data set.  

Neural networks can also handle both non-linear and non-continuous functions.  As 

implemented in the research, the neural network will be trained using the subset of the 

input data where all values are present for each case.  Once trained, the network will be 

used to augment the input data prior to construction of a Bayesian network. 

There are different types of neural network applications available for 

consideration.  They fall into five basic categories: prediction, classification, data 

association, data conceptualization and data filtering.  The primary use of a neural 

network in this research is for prediction.  Types of predictive neural networks include 

the back-propagation, delta bar delta, extended delta bar delta, directed random search, 

higher order or functional link, and the self-organizing into back-propagation.  Of these 

all use the feed forward back-propagation method of learning described below with some 

modifications associated with the specific type except for the directed random search 

network [Anderson and McNeil, 1992].  Feed-forward back-propagation networks 

(usually referred to as the back-propagation networks) are available in a variety of 

commercial applications.  A back-propagation neural network was therefore selected for 

use in this research. 
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A typical back-propagation neural network is shown in figure 5-1. 

 

 
 

Figure 5-1 
Example Neural Network 

 
The network consists of an input layer, one or more hidden layers and an output layer.  

The input layer nodes feed the input values into the rest of the network.  Connections 

between layers are bi-directional.  Data values move from inputs through the hidden 

layers to the outputs during feed forward operation.  During learning error corrections are 

propagated back through the network starting from the output nodes and running upward 

through all hidden nodes from the bottom to the first hidden layer.   

All hidden and output nodes in the network have the structure shown in figure 5-

2. 
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Figure 5-2 

Neural Network Node 
 

 These nodes can have any number of inputs.  During feed forward operation, the node 

first calculates the sum of all inputs times their weights.  A transfer function is then 

applied to the sum.  This function transforms the output into a number between zero and 

one (minus one and one in some software packages).  There are several transfer functions 

that can be used.  All functions have either a ramp, bell or modified S-shaped curve that 

runs asymptotically along the X-axis approaching either the maximum or minimum value 

[Maren et al, 1990].  The type of transfer function is manually selected during network 

construction while the weights for each input connection are calculated during the 

learning process described below.  All inputs must also be scaled to values between zero 

and one.  Outputs, which are all values between zero and one, must be scaled in the 

reverse direction from a decimal value to the actual value.  Most software packages, 

including the one used for this research, perform the scaling task automatically so that it 

is transparent to the user.  
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The feed forward back-propagation method of learning iteratively adjusts the 

values of the weights for each hidden and output node during the learning process.  In the 

first step, the input values are read into the input nodes and these values are fed forward 

through the hidden nodes until an answer is calculated at the output level as described 

above.  The calculated output is then compared with the target output which is the value 

of that node in the training data given the input data.  To correct the weights, the 

Generalized Delta Rule expressed in terms of a Delta function is used.  This function is 

applied to every connection weight after each presentation of a training data set.  The 

weights are then updated using 

weightsnew = weightsold + α * Delta(weightsold) 

where α is the learning rate that controls how fast the weights are changed.  The Delta 

function is proportional to the negative of the derivative of the error with respect to the 

connection weights [Maren et al, 1990].  The actual form of the Delta function is 

dependent on the transfer function chosen for the node.  The greater the slopes of the 

error with respect to the weights, the greater the change that is applied to the weights.  

The error corrections are propagated backward through the network to update the weights 

in each node.  This process continues until the weights in the network converge to values 

that minimize the error between the calculated values and the target values.  The speed of 

convergence is affected by the learning rate alpha (α).  Low values of alpha will cause the 

weights to be adjusted slowly resulting in slow convergence on final weights.  A large 

value of alpha will result in faster convergence, but may cause the corrections to 

overshoot causing network learning to become unstable and the weights to diverge from 
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the solution.  When learning is complete the relations between variables are stored in the 

weights of the hidden and output layers of the network. 

 Unlike Bayesian networks, there are no software packages available that can learn 

a network structure from a data set.  Construction of neural networks is primarily a 

manual operation.  Like Bayesian networks, developing good neural networks can be as 

much an art as it is a science.  The model builder must manually choose the number of 

layers, the number of nodes in each layer and the transfer function for each layer.  These 

are all critical decisions which affect the quality of the final network.  Increasing the 

number of layers and nodes in the hidden layers will improve the final fit of the network 

to the data.  However, just as in curve fitting it is possible to “overfit” the neural network 

to the data set. 

If a network is overfitted to the data, the network provides very accurate 

replication of the learning data set but poor performance predicting values between 

learning set points.  In such cases, neural networks have poor generalization capability to 

any values outside the training data.  This problem can be avoided by limiting the number 

of hidden layers and hidden nodes.  Although a back-propagation network must have at 

least one hidden layer, 80% of all problems can be solved with a single layer [DeClaris 

and Roberts, 1997].  The most complex problem can be solved with three hidden layers 

[Anderson and McNeil, 1992].  Additional research has been done to look at the total 

number of nodes in the hidden layers.  For the functions evaluated in the research, the 

selection of two or fewer nodes resulted in underfitting of the data while selection of nine 

or greater nodes resulted in overfitting [Zhong and Cherkassky, 1999].  Many neural 
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network software packages also allow designation of part of the input database as test 

cases.  This data is then separated from the learning data set.  The network is tested 

periodically during the back-propagation learning process with the test data used to check 

how well the network is learning the variable relationships.  

Neural networks are usually fully connected such that every node in one layer has 

an input connection from all nodes in the layer above it and output connections to all 

nodes in the layer below it.  If nodes have no relation, the network will automatically 

determine this during the back-propagation learning process and weighting values near 

zero will be calculated for connections that do not exist in the data relations.  For this 

research, networks are constructed with the number of input nodes equal to the number of 

columns in the data set with no missing values.  The number of output nodes is set to the 

number of columns with missing data values.  The number of hidden layers is fixed at 

two.  This number was determined by running tests on some of the data sets.  The tests 

found that there was significantly better network performance using two hidden layers as 

compared to one, but no significant difference between two hidden layers and three.  The 

number of nodes in each hidden layer is a step down value from the layers above except 

that the minimum number of nodes in the first hidden layer is two.  This insures that each 

network has at least three total hidden nodes to prevent underfitting.  Each network also 

has fewer than eight hidden nodes to prevent overfitting.  All networks are hybrid 

networks with sigmoid transfer functions in the first hidden layer and the output nodes 

and Gaussian transfer functions in the second hidden layer as shown in figure 5-3. 
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Figure 5-3 
Research Neural Network Structure 

 
The transfer function type was determined by experimenting with the different functions 

and comparison of single transfer function networks with mixed hybrid networks.  

Although the combination sigmoid-Gaussian hybrid network performed the best, the 

difference was not highly significant.  Other combinations of transfer functions provided 

networks that also performed well. 

5.3 Using Neural Networks in Bayesian Network Construction 

 The primary purpose of the neural network in this research is to impute missing 

values to estimate probability distributions for configurations in which there is no data.  

For continuous variables, this is a straightforward process with software sending the 

known values to the neural network as inputs and then retrieving the output variables 

which are then used to fill in missing entries in the database.  Discrete variables require 

additional steps.  All inputs and outputs of neural networks must be numeric values.  
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Non-numeric discrete states are changed to integer values using the same approach as 

described section 4.1.2.  If a predicted value is discrete, the output value from the neural 

network must be converted to one of the discrete states.  If the discrete values are 

numeric, the values are rounded up or down to the nearest integer value.  If the values are 

non-numeric, the neural network outputs are rounded up or down to the nearest integer 

value and then converted back to the non-numeric using the reverse of the process of 

4.1.2. 

 A secondary use of the neural network is to eliminate the data scatter pre-

processing requirement described in section 4.2.  During learning, the neural network fits 

a numeric solution to the data.  By using neural network predictions in place of the 

database values, the data set is effectively smoothed.  An example of the method applied 

to the FLIR data set of figure 4-11 and then discretized using the derivative method is 

shown in figure 5-4. 
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Figure 5-4 

Neural Network Smoothing Example 
 

As can be seen, the cut points for figure 5-4 are very similar to the cut points in figure 4-

13.  For this research, if the neural network input option is selected, the output of the 

neural network is used for calculation of the bin dividing points using the derivative 

method described in chapter 4.  If the data set is smooth, the neural network output will 

be very close to original data set with little impact on cut point selection.  If the data set is 

scattered, the neural network smoothes the data insuring proper execution of the 

discretization algorithm.  This eliminates the data scatter limitation of the derivative 

method allowing direct use of scattered data sets. 
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5.4 Transforming Neural Network Outputs into Bayesian Network Probabilities 

 If there are missing values in the input data set, those values will be calculated by 

the neural network resulting in a new data set containing a mixture of the input data set 

and neural network predictions.  This data can be used to provide a larger number of data 

values for each bin to reduce the influence the number of bins has on output probabilities 

if Dirichlet learning is used.  It also can be used to ensure that even if the original data set 

has gaps that would result in bins that have no data values, the final learning set will have 

the gaps filled in by the neural network predictions.  Two methods are considered for 

handling the mixture of learning data with neural network predictions as described below.   

The first method is to create a very large data set by using an input data set with a 

large number of missing data values.  This data set is then used as the training data for 

Dirichlet learning of the probabilities.  Although viable, this method has significant 

shortcomings.  Calculation of a very large data set incurs significant computational time 

penalties and is therefore not efficient.  The final probabilities will still have residual 

values in bins far from actual data values in the learning set as described in section 4.5.  

Finally, the probabilities do not take into account the additional uncertainties introduced 

into the output data set by the introduction of neural network predictions. 

A second and better solution is to calculate the uncertainty between the neural 

network predictions and the training data and add it to the uncertainty of the data values 

within each bin.  This method allows direct calculation of probabilities without 

generating overly large data sets.  It also includes the uncertainty due to the errors 

introduced by the neural network predictions.  Using the normal distribution substitution 
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method described in section 4.4, the standard deviations are calculated for the data points 

that fall in each bin of a designated continuous leaf node.  The variance of the data within 

each bin is then calculated by squaring the standard deviation.  The uncertainty of the 

neural network data can be calculated as a variance using the formula 

σnn = (Learning Data – Prediction)^2 
σnn is the variance of the neural network data 
Learning data is the value of a point in the input data set 
Prediction is the neural network output for the same set 
of inputs as the Learning Data 

 
This results in a variance for each point in the learning data set.  The model builder is 

then faced with a choice of which variance or combination of variances to use for the 

uncertainty due to the neural network prediction.  For this research, three options are 

considered for determination of this variance: nearest value, average and maximum.   

The nearest value option searches the input data set and finds the variance 

associated with the set of input values that is closest to the input values used with the 

neural network prediction.  This option is most suitable for data that is not scattered and 

where it is reasonable to assume that the error in the neural net output will be similar 

under like conditions.  An example is shown in figure 5-5. 
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Figure 5-5 

Neural Network Prediction Accuracy 
 

The nearest value option provides the most accurate prediction of error under the 

specified assumptions.  However, this option requires significant computer run time to 

execute if the number of missing values is large and/or the database of complete data 

contains a large number of values. 

 The average variance option is best suited for use if the data set is scattered.  In 

this case there may be measurement errors in the input data set.  The average variance 

provides a reasonable variance estimate across the entire data set under such conditions 

and prevents local extremes that would occur if the nearest value method is used.  The 

average value option would be appropriate for input data such as that shown in figure 5-4.  
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The maximum variance is the highest variance found between the learning data set and 

the neural network prediction across the entire data set.  This method is used with data 

sets which are not scattered.  This provides the most conservative error estimate of the 

three methods.  Both the average and maximum options are more computationally 

efficient as compared to the nearest value option. 

 Once a variance is selected, a new normal distribution is calculated that 

incorporates sources of uncertainty from both the data and the neural network.  If all 

values that fall within a single bin for a unique set of inputs are data values from the 

learning set (i.e. no neural network predictions), then the procedure described in section 

4.3 is used.  However, if any values within the bin range are generated by the neural 

network, a new standard deviation that includes both the variation of data values within 

each bin plus the variation introduced by the neural network predictions is calculated.  

The formula for calculating the total standard deviation is 

std devtotal = ((std devdata)^2 + σnn)^0.5 
std devtotal is the standard deviation for both sources of   
uncertainty 

     std devdata is the standard deviation of the data for the inputs 
     σnn is the variance of the neural network data 

The normal distribution is then calculated using the total standard deviation and the 

probabilities replaced in the node probability tables as described in section 4.3. 

5.5 Discussion 

 Integration of neural networks with Bayesian networks combines the strengths of 

both artificial intelligence agents while eliminating some of the individual limitations of 

each.  The neural network allows interpolation of data values not contained within the 
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learning data set.  It provides smoothing of scattered data sets effectively mitigating one 

of the limitations of the derivative method described in section 4.2.  In combination with 

the discretization methods described in chapter 4, this allows the creation of engineering 

models that can predict outputs of any set of input values bounded by the learning data 

set.  Using a Bayesian network as the final product allows reasoning with incomplete 

inputs.  Predicted outputs are qualified as probabilistic distributions providing a range of 

values over which the output may lie.  This research supports a general trend in which the 

areas of neural networks, statistics, generative models and Bayesian inference are 

coalescing into a single field of Soft or Natural Computing focused at drawing 

conclusions from incomplete, noisy data [Smith, 2001]. 

 Implementation in this research uses a single, manually constructed neural 

network for prediction.  This represents one of the few, non-automated tasks in the 

Bayesian network construction process.  Additional research should be conducted to 

explore computer generation of the neural network structure.  While development of an 

algorithm to select the input and output nodes would be straight forward, selection of the 

number of hidden layers and number of nodes in each of those layers is the challenge.   

The algorithm must choose a network structure that provides enough layers and nodes to 

adequately fit the network weights to the training data without making the network any 

more complex than is necessary.  One method that has been developed to address this 

issue is Vapnik-Chervonenkis (VC) theory used for estimating data dependencies from 

finite data samples.  This provides a framework for choosing one model from a set of 

possible models using Structural Risk Minimization (SRM).  SRM scores and orders the 
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model set according to their complexity.  Model selection is then accomplished by 

choosing a minumal analytic upper VC bound of the prediction risk [Zhong and 

Cherkassky, 2000], [Cherkassky and Mulier, 1998].  Use of multiple regression models is 

another area that has been explored in recent research.  Use of a single neural network 

assumes that all data was generated by a single, unknown model.  Better solutions may 

exist by modeling the data with two or more regression models [Cherkassky and 

Yunqian, 2002a] [Cherkassky and Yunqian, 2002b].
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6. Research Software Implementation 

 

 To conduct the proposed research, a software package capable of creating 

Bayesian network models from data sets is required for comparison to manually 

constructed networks.  A search of existing applications found no software package 

suitable for creating engineering models from data sets containing mixtures of discrete 

and continuous variables.  The primary deficiency was the absence in available packages 

of methods for intelligent, simultaneous discretization of multiple continuous variables.  

This led to the development of the derivative method of discretization which is 

implemented in the research software package described below.  The software package, 

BN Builder, integrates new code to implement the procedures described in chapters 4 and 

5 with four third-party software packages providing the rest of the functionality required 

to construct a Bayesian network from a data set.  Integrating existing software to the 

maximum extent possible minimized the amount of new code development required to 

perform the research tasks with respect to computer constructed models.  The software 

architecture and data flow are presented in figure 6-1. 
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Figure 6-1 
Integrated Software Architecture 

 
6.1 Supporting Software Applications 

 Microsoft® Excel is used as the database input file format.  This is a natural 

choice because many data sets are stored in this format.  Furthermore, because Excel can 

read databases stored in many formats, there is minimal need for manual transformation.  

The Excel workbook also provides an output record of processes performed during 

execution of the BN Builder program.  During the build process, extra worksheets are 

added to the Excel workbook and additional data is generated and written to these 
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worksheets.  This not only assisted in debugging during software development, but 

allows anyone constructing a model to see the details of the numerous intermediate 

operations carried out during construction.  Excel also provides built-in functions for 

many of the operations required during the build process such as sorting, calculation of 

various statistics and generation of distributions. 

Bayesian network structure learning was performed by BN PowerConstructor, 

one of the modules in the BN PowerSoft collection by Jie Cheng of the University of 

Alberta, Canada.  Because BN PowerConstructor works only for discrete variables, BN 

PowerSoft provides a Data Preprocessor program which discretizes continuous variables 

using either the equal frequency or equal width method of unsupervised discretization.  

The BN PowerConstructor program constructs belief networks by using conditional 

independence (CI) tests. In general, it requires CI tests to the complexity of O(N4); when 

the attribute ordering is known, the complexity is O(N2) where N is the number of 

attributes (fields) [Cheng et al., 1997].  The resulting structure can be edited within the 

PowerConstructor program and saved in most common formats used by commercial 

Bayesian network software packages.   

Output networks created using BN PowerConstructor are not suitable for use in 

this research.  The first problem is that the nodes are discretized using uninformed 

methods resulting in poor performance as previously discussed in section 3.3.  A second 

problem is that the output networks contain all discrete nodes with non-numeric or string 

state names.  All numeric values are translated into strings by placing an “x” in front of a 

truncated portion of the number.  Discrete numbers are truncated to the three right digits, 
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while continuous numbers are truncated to the left three digits.  This results in a discrete 

numeric node with states of 1000 and 1800 in the data set having states of x000 and x800 

in the output network.  This not only prevents the states from being set by entering 

numeric values, it is confusing even when manually entering and retrieving the state 

values.  This also precludes the integration of these networks with other Bayesian 

networks that use numeric values.  Because of these limitations, networks created using 

BN PowerConstructor are only used to provide the relationships between variables of the 

network. 

 Netica, by Norsys Software Corp., serves two functions in the architecture: input 

of structural relations and output of the finished network.  Netica version 2.29, an 

experimental beta version not yet available to the general public, is used for this research.  

This version is used because it contains the command set for handling of continuous 

variables in the Visual Basic programming environment; commands not available in the 

current commercial version of the software.  If the relationship between variables is 

known, the structure is entered into Netica using the graphical user interface.  The user 

enters the nodes, names the nodes with the variable names that match the column labels 

in the input database and draws the arcs showing the relationship between variables.  The 

input Netica file, whether created by BN PowerConstructor or manually entered by the 

user, only provides variable relationship information.  All other information is discarded 

by the BN Builder program.  Therefore, no variable type, state names, ranges, etc. needs 

to be entered during manual construction.   
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 The output Bayesian network is reconstructed in Netica format by the BN Builder 

software package.  Netica version 2.29 contains a COM interface with the Netica engine.  

This provides a software command set that allows any operation that is supported in the 

graphical user environment to be invoked within the Visual Basic program environment.  

The BN Builder software makes use of these commands to completely reconstruct the 

network using the algorithms described in chapters 4 and 5.  The output is a complete and 

ready to use Bayesian network file. 

 Qnet 2000 by Vista Services, Inc. is a software program for constructing, training 

and recalling predictions using neural networks.  This package comes with a graphical 

user interface for constructing and training back-propagation neural networks.  The 

software also comes with a Dynamic Link Library (DLL) file that provides software 

commands that can be used to send and receive data from the neural networks within the 

Visual Basic programming environment.  Neural networks are created manually as 

described in section 5.2.  The neural network is an optional input to the software build 

process.  During program execution, BN Builder sends the input values to the neural 

network whenever predictions are required.  The neural network generates the output 

variable predictions for the input data values which are then returned to the main 

program.  These values are stored in the Excel workbook for use as needed in the build 

program.  Neural network predictions are tagged with a blue background color in the 

spreadsheet cell so that the program can identify which values of the database are inputs 

and which values are neural network predictions.  This information is needed for 
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calculation of the node probabilities if the normal distribution option is selected as 

described in section 5.4. 

6.2 BN Builder Research Software 

 Microsoft® Visual Basic 6.0 was selected as the programming language for 

integration and custom component software because it can be compiled into an 

executable program for rapid execution, is compatible with integrating the supporting 

applications mentioned above and is the language most familiar to the developer.  The 

application was constructed using a spiral development process and modularization of the 

functionality.  Extensive documentation is included in the form of comments within the 

software code.  The modules are stand alone functions such that there are no subroutine 

calls within one subroutine invoking another subroutine.  This allows the direct addition 

or substitution of other functions and subroutines, even those written in other languages, 

so long as they conform to the Visual Basic calling convention.  Although the program 

was specifically designed for this research, the architecture was designed to 

accommodate easy insertion of additional functionality or modification of the program 

for future research. 

6.2.1 Graphical User Interface 

 The user interface screen provides the user selectable options for Bayesian 

network construction.  The input screen also provides outputs that are useful for 

monitoring of the construction process.  The user interface screen is presented in figure 6-

2. 
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Figure 6-2 
Graphical User Interface 

The functionally of each control on the user interface page is described below: 

• “Build Status” window - provides feedback to the user on which of the operations 

described below is currently being executed by the program.  The window is 

updated each time one module finishes and the next one begins execution.   

• “Maximum Number of Discrete States” - up-down select button allows selection 

of the threshold for determining if a node is discrete or continuous.  If a node has 

a number of states less than or equal to this value, the node will be treated as a 
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discrete node in the final network.  If the number of states is greater, then the node 

will be treated as a continuous node. 

• “Number of Continuous Node Bins” - up-down select button selects the number 

of bins into which the data for continuous variables is discretized when the 

derivative algorithm is executed.  After the determination of the bin cut points, the 

software will always adds a bin from negative infinity to the lowest cut point and 

from the highest cut point to positive infinity.  Because the derivative method 

places cut points based on change, it does not guarantee that the maximum and 

minimum values from the data set are captured when determining the lowest and 

highest cut points.  The addition of these two ranges ensures that no errors occur 

if data values outside the maximum and minimum limits of the bins are present 

during learning of the probability tables. 

• “Continuous leaf node probabilities” – determines the probability distribution in 

continuous leaf nodes.  If the “Dirichlet” option is chosen, then Dirichlet learning 

with a uniform prior will occur.  If the “Normal” option is selected, then the final 

probability tables for continuous leaf nodes will be overwritten with a normal 

distribution with parameters estimated from the data as described in section 4.3.  

• “Neural Net” – determines if a neural network will be used to generate missing 

data values and smooth the input data set.  If the “Use Neural Network” option is 

selected, then the “Open Neural Network” option becomes visible on the right 

side of the screen.  This option is used to specify that the user has constructed a 

neural network and wants it to be used during network construction.  If the “No 
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Neural Net” option is selected, the input data must not contain any blank cells.  

The open option will not be visible and the input data set values will be used for 

discretization. 

•  “Open Database File” - used to open the Excel spreadsheet containing the data 

set for the model.  The data must on “Sheet1” of the workbook.  The names of the 

nodes must be in the first row of each column and there must be no completely 

blank rows or columns within the data set.  During execution, the number of rows 

and columns found in the input database is displayed. 

• “Open Netica Network” - used to open the file containing the graph representing 

the dependency structure among the variables.  This file must be in a format 

compatible with the Netica software application.  The nodes in the network must 

exactly match the column labels in the database input file.  The one exception is 

that when BN PowerConstructor discretizes variables, it adds a “_d” to the end of 

the variable name.  The BN Builder software recognizes this tag and will 

automatically change its name back to the original. 

• “Open Neural Network” - used to open a neural network.  This option is only 

visable if the “Use Neural Network” option is selected.  The network must be in a 

format that is readable by the Qnet 2000 software program.  The input and output 

node names must match the column labels in the input database.  The input data 

columns must be ordered so that the input nodes come first with the output nodes 

at the end.  If the network is successfully opened, the number of input and output 

nodes is displayed. 



107 

 

• “Build Network” - executes the program.  This option is selected after all the 

above inputs have been entered.  When the software has completed the network 

construction, a “Done” message appears in the “Build Status” window. 

• “Exit” - closes the BN Builder program and all other support applications.  The 

user is provided the option to save the Netica output file and the Excel workbook 

including all the extra worksheets added during the build process as each of these 

applications closes. 

• “Run Time” - displays the number of minutes from the time the user interface is 

first displayed until the final network construction is completed. 

6.2.2 Software Execution 

 The software code executes a series of functions as shown in figure 6-3. 
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Figure 6-3 
Software Execution Sequence 

All modules in figure 6-3 are individually called functions in the software package with 

the exception of the last three which are all part of the network reconstruction operation.  

Program execution begins when the “Build Network” option is selected from the user 

interface.  The program first checks the input Excel database file and counts how many 

rows and columns are in the database.  It next checks to see how many unique states are 

contained in each column.  This information is then used to determine whether each node 
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is discrete or continuous in the final network.  This determination is made based on the 

user set threshold for defining the maximum states allowed for a discrete node. 

 Once all node types are identified, the program will check to see if the neural 

network option is selected.  If it is selected, the program looks for any cells with missing 

data.  If empty cells are found, the software sends the available data in each row as inputs 

and retrieves the outputs which are then placed in the empty cell(s).  Non-numeric 

discrete states must first be transformed into integers using the process described in 

section 4.2.2.  Outputs for discrete variables are transformed back into the discrete state 

values for numeric states or the descriptive states for non-numeric values using the 

reverse of the same procedure.  After empty cells in the database are filled in with 

predictions, the database is rechecked to see if the number of unique states has changed.  

If the neural network option is selected, the program adds a new worksheet to the Excel 

workbook and will create a new data set by sending the input values to the neural 

network values and retrieving network predictions for the outputs.  This new data set is 

then used for discretization and insures that the derivative method is not influenced by 

scattered data sets as described in section 5.3. 

 The next operation is to open the Netica input file and retrieve the network 

structure.  The program creates a matrix of the arcs identifying the variables and direction 

of the arcs.  All other data in the network is discarded.  The variable relations are used to 

set the arcs when the network is reconstructed, and is also used for the derivative method 

discretization process to identify the continuous node chains.  If discrete numeric states 

exist, the data is sorted in numeric order.  This operation insures that when the final 
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network is constructed that the discrete numeric state nodes will have node states that go 

from the lowest number to the highest number.  The software then calculates the ranges 

of all continuous variables by discretizing the data in the database.  If the neural network 

option was not selected, the program discretizes the data set in the input data set.  If the 

neural network option is selected, the program uses the neural network predictions for the 

outputs of the neural network in place of the data set values.  The program then 

reconstructs the Bayesian network. 

 To reconstruct the network, the program first opens the Netica software 

application.  It then inputs the nodes in the order they appear in the spreadsheet placing 

them in offsetting rows on the screen.  In addition to the node name, each node is 

declared discrete or continuous according to the earlier determination of node type.  Arcs 

are then added between the nodes based on the structure retrieved from the input 

network.  If a node is discrete, the states of the node are set based on the states found in 

the input data set.  If a node is continuous, the ranges of the bins are set based on the 

discretization results.  The program then uses Dirichlet learning with a uniform prior to 

calculate the probabilities in each node from all the cases in the data set which includes 

the input data plus all predictions generated by the neural network.  The software also 

saves the data in a file having the Netica case file format.  This file can then be used to 

relearn the node probability tables as described in section 4.4 when a non-uniform prior is 

desired.  If the “Dirichlet” option is selected, the network is finished and the program will 

show a “Done” message in the status window.  However, if the “Normal Distribution” 
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option is selected, the program will recalculate the probabilities of all continuous leaf 

nodes. 

 The normal distribution option is implemented to change the probability 

distribution of continuous leaf nodes.  Only leaf nodes are implemented at this time due 

to the nature of the research.  Because the research is primarily comparing engineering 

models, the root nodes are usually the inputs to the system and the leaf nodes are the 

outputs.  The data sets are expected to have Gaussian distributions of the output variables.  

The software is implemented to provide the option of replacing the distribution of 

continuous leaf node probability tables with a normal distribution estimated from the 

data.  This option provides a more accurate probability distribution in the node as 

explained in section 4.3.  Additionally, if neural network predictions are used, 

uncertainties introduced by inclusion of neural network predictions are also included.  

This implementation is expected to maximize the predictive accuracy of the output 

Bayesian networks in both the central tendency and the spread of output solutions. 

6.3 Extend Bayesian Network Integration Blocks 

 Another aspect of this research is to explore the integration of equation-based 

models with Bayesian network models.  In this research, equation-based models and 

simulations are constructed and run using the Extend modeling and simulation software 

package.  This package comes with a variety of capabilities including animation for 

visualization of models or simulations.  It also comes with extensive libraries of modeling 

blocks that can be linked together to create a model.  Neither this software package nor 

any other M&S software package investigated contained the capability to integrate a 
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Bayesian network into a model.  This required the development of a custom library of 

function blocks to enable the Bayesian network integration within the Extend modeling 

environment. 

Each block in the Extend libraries is a visual representation of computer code 

written in a language called ModL.  Users who are proficient in code writing can create 

their own blocks using this language.  The Netica Bayesian network software package, 

chosen for this research, comes in two versions: a graphical user package previously 

described in section 6.1 and a set of C language Application Programming Interface 

(API) functions.  Unfortunately, it is not possible to call the Netica API functions directly 

from the Extend modeling environment.  This is due to the ModL language using a Pascal 

format for strings while the Netica functions use a C format.  Although numbers can be 

passed, no alphabetic characters are compatible.  This problem was overcome by 

developing a number-character translator written in C++.  To access a Netica API 

function, the Extend ModL code first translates all character strings to their ASCII code 

values and creates a numeric vector of the numbers.  The code then calls a C++ function 

passing the vector.  The translator converts the numbers back to characters, assembles 

them in strings and then invokes a Netica API function.  Only numbers are returned by 

the Bayesian network to the Extend modeling environment.  If a return value requires a 

string answer such as the most likely node state for a discrete node, the answers is 

returned as the state index number and then translated to the state name in ModL. 

 In order to accomplish this integration, a custom set of blocks was developed to 

invoke one or more of the Netica API functions.  These blocks provide most of the 
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functionality of the graphical user software package.  The blocks are color coded to allow 

for easy identification of the type of function it performs as described below.  Red blocks 

are used to open and compile a network. 

Start Network – Initializes the API with the user license, opens a network and 
complies the network. 
 

Open Network - Initializes the API with the user license and opens a network.  
This block is used for networks with no entries in the probability tables. 
 

 Compile BN – Compiles the network. 
 
Light blue blocks are used to send data from an equation model to the Bayesian network. 
 

Set Node State – Sets a discrete node to a specific state by state index number. 
 

Set Utility Value – Sets the utility value in a utility node. 
 

Enter Binomial Finding – Enters a finding into a discrete node with two 
states. 
 

A
Δ

Set Binomial Finding

A
Δ

Set Utility Value

A
Δ

Set Node State

Open Network

Start Network

Compile BN



114 

 

Set Node Value – Set the state of a discrete or continuous node with a numeric 
value. 
 

Enter Finding – Set a discrete node state by state name. 
 
Dark blue nodes are used to update the network after states have been entered. 
 

Update Node Probabilities – Updates the node probability tables based on the 
current states of the nodes in the network. 
 

Retract Findings – Resets all node findings that have been entered. 
 
Green nodes retrieve data from the network for use by the equation model. 
 

Get Belief – Returns the probability that a discrete node is in a specific state. 
 

Get Mean – Returns the mean value of a continuous node. 
 

Most Likely Value – Returns the mode of a continuous node. 
 

Get Node Statistics – Returns the mean and standard deviation of a 
continuous node distribution. 

Get Node Statistics

Mean Std Dev

A
Δ

Most Likely Value

A
Δ

Get Mean

Get Belief

A
Δ

Update Node 
Probabilities

Retract Findings

Enter Finding

A
Δ

Set Node Value
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Get node value – Returns the numeric value of a discrete node. 
 

Get Decision – Returns a decision from a decision node. 
 

Most Likely State – Returns the numeric state index of the most likely state 
for a discrete node. 
 
Yellow blocks are used to save or close a network. 
 

Save Network – Saves the network under a new name. 
 

Close BN – Closes the network and frees the memory used by the network. 
 
 
6.4 Discussion and Future Research 

 There are numerous improvements and future research studies that could be done 

with the BN Builder software.  Some potential areas include algorithms to determine the 

number of bins for discretization, integration of the BN PowerConstructor engine into 

BN Builder, interleaved structural learning and discretization, and computer generated 

neural networks.  The current software uses a manual entry to determine the number of 

bins for continuous variable discretization.  This was useful for creating networks with a 

specific number of bins for comparison to networks created using other methods.  

Close BN

Save Network

Most Likely State

Value

A
Δ

Get Decision

Get Node Value
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However, if network storage size is an issue, it would be useful to develop metrics which 

balance the number of bins with accuracy, resolution or some other network parameter. 

 BN PowerConstructor is currently implemented as a separate, stand alone 

program.  The program is executed once at the beginning of the process as shown in 

figure 6-1 only if the variable relationships are not known.  BN PowerConstructor is 

implemented with an Application Programming Interface (API).  This would allow direct 

integration of the structural learning functions within the BN Builder program.  This 

could reduce the time required to execute the construction process.  It would also allow 

interleaving of structural learning with discretization.  This could potentially improve the 

final structures by alternately discretizing the continuous data based on the structure and 

then relearning the structure based on the discretization until the network converges. 

    If the neural network option is used, the network must be constructed and 

trained before it can be used as an input into the Bayesian network construction.  

Construction of the neural network by computer would further reduce the human time 

required during computer generation of Bayesian networks.  Algorithms that produce 

multiple networks and then choose the best representation of the training data or 

algorithms that pick a best method based on the number of variables and type data are 

possible areas for future research.   

The neural network integration is currently implemented to generate missing data 

for the output(s) of the system being modeled.  This requires a single neural network to 

make the predictions.  Some problems might have input data sets missing data values in 

all of the columns.  In order to predict missing values under these circumstances, multiple 
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neural networks could be used.  Each neural network would have the variables with data 

values as inputs and the missing variable(s) as outputs.  The software could be 

implemented to choose the appropriate neural network for each instance of a missing data 

entry. 

The Bayesian network integration library and translator software was developed 

to demonstrate the ability to integrate Bayesian networks and equation-based models.  

Although successful, the current implementation is far from optimum due to the 

incompatible data formats of the two software packages.  Execution is slow due to the 

multiple translations required to pass data back and forth between the two software 

packages.  A different modeling and simulation package has been identified that uses a C 

format for its variables.  Any follow on research will investigate a more direct integration 

with the Netica API functions.
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7. Comparison of Modeling Methods 

 

 The primary purpose of this research is to compare the time of construction and 

accuracy of equation-based models to Bayesian network models.  The research uses 

equation-based model results as the baseline for comparison to three different methods of 

Bayesian network construction: manually created networks with probabilities assessed by 

human judgment, manually constructed networks with formulae used to create 

probability tables, and computer-constructed networks using the software described in 

chapter 6 learning both structure and probabilities from data.  The three types of models 

are compared to the equation-based baseline in both accuracy and time to construct 

resulting in the six hypotheses listed below. 

Hypothesis #1A 
Null hypothesis: Human judgment Bayesian networks have the same average percent 
error as equation-based models. 
Alternate hypothesis: Human judgment Bayesian networks do not have the same average 
percent error as equation-based models. 
Hypothesis #2A 
Null hypothesis: Human judgment Bayesian networks require less than or equal time to 
construct compared with equation-based models. 
Alternate hypothesis: Human judgment Bayesian networks require greater time to 
construct compared with equation-based models. 
Hypothesis #1B 
Null hypothesis: Formulae Bayesian networks have the same average percent error as 
equation-based models. 
Alternate hypothesis: Formulae Bayesian networks do not have the same average percent 
error as equation-based models. 
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Hypothesis #2B 
Null hypothesis: Formulae Bayesian networks require less than or equal time to construct 
compared with equation-based models. 
Alternate hypothesis: Formulae Bayesian networks require greater time to construct 
compared with equation-based models. 
Hypothesis #1C 
Null hypothesis: Computer-generated Bayesian networks have the same average percent 
error as equation-based models. 
Alternate hypothesis: Computer-generated Bayesian networks do not have the same 
average percent error as equation-based models. 
Hypothesis #2C 
Null hypothesis: Computer-generated Bayesian networks require less than or equal time 
to construct compared with equation-based models. 
Alternate hypothesis: Computer-generated Bayesian networks require greater time to 
construct compared with equation-based models. 

 

All formula models were created using formulae from published textbooks on the 

subjects being modeled, or derived from these published formulae.  Human judgment was 

tested using a group of nine volunteer test subjects holding a Master’s Degree or Ph.D. in 

math, science, engineering or engineering management.  Subjects were provided 

background information and test results for similar items they were asked to predict as 

described in the appendices for each model.  The computer-generated models used the 

same background data provided to the human judgment subjects to create an output 

model.  For both the human judgment and computer-generated Bayesian network model 

accuracy tests, none of the data used for comparison to the test data was contained in 

either the test data shown to the volunteers or the input database used by the computer 

programs.  Because the background data came from a variety of sources, it was 

impossible to measure the time to collect the test data.  It is assumed that the human 

judgment and computer-generated models were using data that is already available.  All 
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computer-generated models were created using a 3.07 GHz Pentium 4 processor with 1.0 

GB of RAM. 

7.1 Comparison of Equation-Based Models with Human Judgment Bayesian Networks 

 The comparison of accuracy is made by comparing errors in the models of 

appendices A, B, and C.  The three models are used to generate seven cases for testing 

the first hypothesis.  A summary of model errors is presented in figure 7-1. 
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Figure 7-1 

Human Judgment Model Error Comparison 
 

Hypothesis 1A is tested with the data of figure 7-1 resulting in a failure to reject the null 

hypothesis at the 95% level of confidence.  The error associated with the human 
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judgment Bayesian network models is higher in six of the seven cases as compared to the 

equation-based models.  Although the average error for the Bayesian networks is higher, 

the magnitude of the error is not great enough to establish a statistical difference between 

the two at 95% confidence. 

Three cases are of particular interest in figure 7-1.  The NACA 4421 wing is the 

only case in which the human judgment is better than the equation model.  In this 

particular case, the models predicted the coefficient of lift of a two dimensional wing 

section.  Humans were able to see and predict that some flow separation would occur at 

higher angles of attacks resulting in a loss of lift while the equation model could not as 

shown in figure C-12 of Appendix C.  The other two cases of interest are the LRC 2.8KΩ 

220μF 100μH and the LRC 2.8KΩ 220μF 300μH electrical circuits.  For the values of the 

components selected, the value of the inductor has no observable effect on the output 

voltage as can be seen in figure B-4 of appendix B.  The inductor causes a delay in the 

rise of the voltage when it is first applied.  However, this delay happens so quickly it can 

not be observed within the maximum 0.02 second sampling rate of the test equipment for 

commercially available inductors.  The prediction for the two circuits should be the same 

and this is correctly predicted by the equation-based model.  By contrast, the human 

judgment prediction is significantly different as is shown in figures B-6 and B-7 of 

appendix B and is reflected in different accuracies in figure 7-1.  This demonstrates 

biases which are present in human judgment predictions. 

The times of construction for the three models that are used to create the seven 

cases are first presented in figure 7-2. 
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Figure 7-2 

Model Construction Time Comparison 

As can be seen from figure 7-2, time of construction is greater in three of four cases for 

human judgment models as compared to the equation models.  The only case where the 

human prediction model construction time is less is the wing model.  The wing model is 

shown only for comparison and is not used for hypothesis testing as it was obtained from 

an outside source that could only provide an estimate of construction time. 

 In addition to the human judgment models shown in figure 7-2, an elevator 

control model and a thermostat model described in appendices D and J were also 

constructed for use in chapter 8.  These models were manually constructed and 

probability tables were created by manually filling in each cell in the table with a 
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probability determined by the author.  As such, these are also classified as human 

judgment models.  The construction times for all measured models used for testing the 

second hypothesis are presented in figure 7-3. 
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Figure 7-3 

Human Judgment Model Construction Time Comparison 

Hypothesis 2A is tested with the data of figure 7-3 resulting in a rejection of the null 

hypothesis at the 95% level of confidence.  In the Amplifier, LRC and Wing models of 

figure 7-2, the use of nine volunteers to predict the outputs added significant time to the 

construction process.  This can be seen in tables A-1, B-1 and C-1 of appendices A-C.  

The average time for each of the nine humans to make their predictions was 8.2 minutes, 

resulting in over an hour in each case to collect the human judgments.  In the Elevator 
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Control and Thermostat models where probabilities were generated from a single person, 

the time of model construction is very similar to the time required to build the equation-

based model. 

 The results obtained in the test models and cases do not support a conclusion that 

there is an advantage to using human judgment Bayesian networks over equation-based 

models.  Human judgment models generally demonstrate less accuracy than their 

equation-based equivalents.  Construction of human judgment models requires about the 

same amount of time if the probabilities are entered manually into the node probability 

tables by a single person. Considerably more time is required if collecting predictions 

from multiple people.  The one possible exception may be for very complex modeling 

problems in that the test data shows a lower time of construction as compared to the 

estimate while accuracy is better in one of the two cases.  Investigating very complex 

models is beyond the scope, capability and budget of this investigation but should be 

considered for future research. 

7.2 Comparison of Equation-Based Models with Formula Bayesian Networks 

The comparison of accuracy uses the error measurements in the models of 

appendices A, B, E, F and K.  The five models are used to generate nine cases for testing 

the first hypothesis.  A summary of model errors is presented in figure 7-4. 
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Figure 7-4 

Formula Model Error Comparison 

Hypothesis 1B is tested with the data of figure 7-4 resulting in a failure to reject the null 

hypothesis at the 95% level of confidence.  The error associated with the formula 

Bayesian network models is higher in five of the nine cases and less in the other four 

cases as compared to the equation-based models.  The averages for all nine cases are 

nearly the same for each modeling method.  This is a logical result since both sets of 

models were built using the same set of equations. 

 The comparison of time of construction uses the models of appendices A, B, E, F 

and K are presented in figure 7-5. 
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Figure 7-5 
Formula BN Model Construction Time Comparison 

Hypothesis 2B is tested with the data of figure 7-5 resulting in a rejection of the null 

hypothesis at the 95% level of confidence.  As can be seen from figure 7-5, times of 

construction are very similar for both simple and complex models.  The average over all 

five models is nearly the same number.  This indicates that constructing models using 

equations takes roughly the same amount of time whether using The Extend modeling 

and simulation package or the Netica Bayesian network package. 

 The only interesting point of this comparison is the LRC Bayesian network 

formula model.  The first attempt to build this model used intermediate variables of the 
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equations found in appendix B the same way the equation-based model of figure B-2 of 

appendix B is constructed.  This model failed to work because the equation is a second 

order equation which may have complex roots.  When using intermediate variables in a 

Bayesian network, some of the variables were converted to complex numbers when the 

equation to table option was used due to the calculation of all possible combinations of 

the bins of each continuous variable.  This resulted in some nodes having a mixture of 

real and imaginary numbers in the probability distribution.  The formula network was 

reconfigured as shown in figure B-8 so that the entire equation for calculation of current 

was entered as one very large formula into node “I”.  Although this corrected the problem 

with imaginary numbers, it still resulted in a poor prediction of current and voltage out 

for the lowest time bin of 0.0 to 0.1 seconds in two of the three predictions.  This 

anomaly can be seen in figures B-13 and B-14 of appendix B. 

 The results of this comparison demonstrate that equation-based modeling and 

Bayesian networks constructed using formulae with the chosen software packages 

produce equivalent results.  Construction and comparison of more models is highly 

unlikely to change the results of the hypothesis testing.  The advantage of using a 

Bayesian network is that its output is a probability distribution.  An equation-based model 

would have to be run multiple times to get the same distribution.  A disadvantage of 

using a Bayesian network constructed with the Netica software is that it may require the 

formula to be entered as one very long equation to prevent the generation of imaginary 

numbers.  Although this results in a smaller network, it is more difficult to program and 

far more difficult to troubleshoot than breaking the equations down into a series of 
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simpler equations using intermediate variables.  This limitation is related to the particular 

software selected and not to Bayesian networks in general.  Evolution of Bayesian 

network software to hierarchical modeling capability may improve the implementation of 

equations within the models. 

7.3 Comparison of Equation-Based Models with Computer-Generated Bayesian 

Networks 

Model errors from appendices A, B, and C are used to compare the accuracy of 

computer-generated models with the baseline.  The three models are used to generate 

seven cases for testing the first hypothesis.  A summary of model errors is presented in 

figure 7-6. 
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Figure 7-6 

Computer-Generated BN Model Error Comparison 
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Hypothesis 1C is tested with the data of figure 7-6 resulting in a rejection of the null 

hypothesis at the 95% level of confidence.  The error associated with computer 

constructed Bayesian network models is lower in all seven cases as compared with the 

equation-based models.  The magnitude of the difference in error is great enough to 

establish a statistical difference between these two methods at 95% confidence. 

Three cases are of particular interest in figure 7-6: Amplifier Step, LRC 1KΩ 

220μF 100μH and NACA 4421 wing.  In all three cases the computer-generated Bayesian 

network had substantially less error than the equation-based models.  This can be traced 

to non-linearity in the test data of these three cases which are not captured by the 

equations. In the amplifier model where the step function is used, there is noise at the 

input and output of the amplifier at the lower end of the step when zero voltage is the 

input as can be seen in figures A-6, A-7 and A-19 of appendix A.  In the LRC 1KΩ 

220μF 100μH model the voltage does not decay to a steady state value near zero as 

predicted by the equation which can be seen in figures B-4 and B-12 of appendix B.  This 

was traced to charge leakage from the capacitor.  The voltage decays instead to a value of 

approximately 0.2 volts where the capacitor charge leakage and rate of charge reach 

equilibrium.  The NACA 4421 has flow separation which occurs at higher angles of 

attacks resulting in a loss of lift.  This occurs in thicker wings as can be seen in figures C-

5 and C-12 of appendix C.  The computer-generated Bayesian networks are able to learn 

the existence of these phenomena and accurately predict their presence in other similar 

configurations.   
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 Improved accuracy was not expected prior to conducting the research.  Early tests 

did show that Bayesian networks could learn relationships between variables including 

any non-linearities that are not captured by equations, and that this could result in 

improved accuracy.  However, early tests also showed a loss of accuracy when 

discretizing continuous data sets into bins.  It was theorized that improvement in one area 

would cancel out the additional error added in the other area during construction of a 

Bayesian network by a computer.  Development of the derivative method of 

discretization, incorporation of the neural network to provide the ability to predict cases 

not represented in the data set, and replacement of Dirichlet probabilities with normal 

distributions of the data all improved the accuracy of the discretized models.  These 

developments also allowed the data to be discretized into a larger number of bins 

increasing resolution of the final model.  The total combination of factors resulted in very 

small errors introduced during the final discretization process.  These small errors were 

vastly overwhelmed by the gains in accuracy achieved through learning of the variable 

relationships directly from the data.  The accuracy improvement by itself presents an 

exceptionally strong case for considering the use of computer-constructed Bayesian 

network models. 

The comparison of time of construction uses the models of appendices A, B, D, E, 

F and K.  The construction times of these models are presented in figure 7-7. 

Error! Not a valid link. 

 
Figure 7-7 

Computer-Generated Model Construction Time Comparison 
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Hypothesis 2C is tested with the data of figure 7-7 resulting in a failure to reject the null 

hypothesis at the 95% level of confidence.  The computer-generated models take less 

time to construct as compared to equation-based models in five out of six cases.  The 

difference is so great in these five cases that it supports a conclusion that construction 

time for computer-generated Bayesian networks is less than equation-based models at 

95% confidence.  This result was expected in that computers can perform certain tasks 

such as complex mathematical calculations and filling in large probability tables much 

more quickly than humans.  This result further strengthens the case for considering the 

use of computer-generated Bayesian network models as the results support the research 

goal of reducing M&S costs.  

 All of the cases provide noteworthy observations.  The amplifier model is the only 

comparison where the equation-based model took less time to construct as compared to 

the Bayesian network.  This is caused by unique factors associated with this particular 

model.  The equation model was extremely easy to construct as the modeling software 

package came with a pre-built amplifier element.  The more complex circuit of figure A-

1 is contained in the single block labeled “Amp” of figure A-2 in appendix A.  The 

Bayesian network took longer to construct as the input and output data consists of two 

very different waveforms.  This required the construction of two separate Bayesian 

network models and two neural networks; one to represent each waveform.  Two models 

are required because of the limitations of the derivative method described in chapter 4. 

 The LRC and Radar models have the highest construction times for the Bayesian 

network models.  As presented in table B-1 of appendix B, 41 of the 49 minutes needed 
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to construct the LRC model were consumed by computer run time of the BN builder 

program.  Although this network contains only five nodes, the input data set contains 808 

rows while the program generated 303 additional rows of data to predict the three circuit 

configurations tested.  By contrast, the Commuter model contains 30 nodes (29 

continuous, 1 discrete).  The input data set contains 25 rows of data and no additional 

data is generated.  Computer run time is 3 minutes to construct this model with the BN 

Builder software.  This demonstrates that model construction time is influenced much 

more by the number of rows of data including any neural network predictions than by the 

number of columns in the data set.  This also demonstrates the efficiency of the derivative 

method where 29 continuous nodes are simultaneously discretized within a total network 

build time of about three minutes. 

 The Elevator Control model has the greatest difference between the two 

construction methods.  This case is unique in that both models do exactly the same 

control function with the equation-based model using a rule technique and the Bayesian 

network using probabilities.  The elevator of appendix D has six call buttons on the four 

floors, each with two possible conditions.  The elevator can be moving up or down, has 

four destination selection buttons each with two conditions and can be at one of four 

floors when a decision must be made.  A rule based approach must cover (26 * 2 * 24 * 

41) or 8192 possible combinations.  All combinations can be reduced to 512 rules to 

cover elevator movement.  This is possible because multiple conditions can be covered 

by a single rule.  For example, if the elevator is at a floor below two and the direction is 

up, one rule covers both the second floor destination select and the second floor up call 
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button.  Programming the rules in an equation-based model requires 111 function blocks 

as shown in figures D-1 through D-3 of appendix D.  By contrast, the computer-generated 

model requires only 13 nodes as shown in figure D-5 of appendix D.  Although the tables 

of the position and destination node are large, the time required to learn the probability 

tables is small for computer learning.  The conclusion is that there is a great advantage to 

using Bayesian networks or influence diagrams for decision or control models as 

compared to a rule-based approach.   

The exact type of network to be used is determined by the specific application.  If 

the problem is rule-based where the desired result is for the network to provide a specific 

output for a given set of inputs, all that is required is a probabilistic inference.  A 

Bayesian network will suffice in this application.  An example would be a target decision 

support network where the requirement is to determine whether a contact is friendly or 

hostile as demonstrated in appendix L.  Based on sensor inputs, this only requires 

probabilistic inference.  If the problem is more complex and the application requires 

optimization based on conflicting goals, an influence diagram is used.  Influence 

diagrams contain utility nodes allowing the assignment of utility values to outcomes of 

the decision.  If the target network must now make a recommendation to either shoot 

down the target or to hold fire, that decision must be weighed with the utilities of the four 

possible outcomes: target friendly and held fire, target friendly and shot down, target 

hostile and held fire, target hostile and shot down.  The recommended decision will now 

be the maximum value of the sum of the utilities assigned the outcomes of each decision 

times the probability the target is hostile or friendly as demonstrated in appendix L. 
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 The LRC, FLIR and Commuter models are of interest in that the structural 

relationship found using the BN PowerConstructor program did not match the 

relationship of the equations derived for the same models.  In the case of the LRC model, 

BN PowerConstructor found no relation between the value of the inductor (L) and any of 

the other nodes.  This is because for the values of R, C, and L drawn from available parts 

on hand, the roots of the equation were real and the delay in voltage rise caused by the 

inductor was too short in duration to be measured with the test equipment.  This 

demonstrates an important advantage to the use of Bayesian networks.  If the learning 

data set bounds the upper and lower limits of the input variables, a Bayesian network may 

find a simpler solution if some variables do not influence the outcome in this particular 

region. 

In the case of the FLIR and Commuter models, the BN PowerConstructor 

program found variables relationships that were not contained in the equations.  For the 

particular FLIR system tested, a relationship was found between the display polarity and 

the maximum detection range.  This occurred despite the fact there is no theoretical basis 

in infrared theory for such an effect to occur.  Because of this the resulting computer 

model is far more accurate than either the equation-based model or formula Bayesian 

network as can be seen in figure F-15 of appendix F.  Similarly, the Commuter model 

found relationships between both day of the week and time of departure and the total 

commute time as can be seen in figure K-14 of appendix K.  This demonstrates another 

important advantage to using computer-generated Bayesian networks in that structural 
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learning from data sets may find relationships not contained in the equations that can 

significantly influence the outcome of the model or simulation. 

7.4 Discussion and Conclusions 

 The comparison of modeling methods provides insights into current methods of 

modeling and simulation.  Most models and simulations constructed today for 

engineering trade studies use an equation-based approach.  Therefore, this type of model 

was used as a baseline for this research.  Comparison of this method to manually 

constructed human judgment problems found no advantages in that these Bayesian 

networks on average took longer to construct and were less accurate as compared to the 

baseline.  Comparison of formula Bayesian networks to the baseline found no compelling 

reason to change modeling methods.  These two methods were essentially equivalent in 

accuracy and time of construction while the formula Bayesian networks experienced 

some problems with imaginary numbers because of the software package used for the 

comparison.  These first two methods of Bayesian network construction are currently 

what are available in commercial software packages.  These test results may explain why 

there has been no move towards wider use of Bayesian networks in engineering 

applications. 

 The results of this research demonstrate that there is a two compelling reasons to 

consider the use of computer constructed Bayesian networks in engineering model 

construction.  Research results demonstrate that this method is statistically both faster in 

terms of model construction time and is more accurate than using present equation-based 

methods.  Figure 7-8 presents a comparison of construction time and model complexity. 
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Figure 7-8 

Model Time-Complexity Comparison 

Figure 7-8 shows a log-log plot of the number of function points versus the time of 

construction.  A function point is defined as one functional element in the equation-based 

Extend modeling package or one node in the Netica Bayesian network software package.  

One observation is that for equivalent models, the Bayesian network models require 

fewer function points than the equation models.  This is possible because equation-based 

models often require multiple constants and calculation of intermediate variables to reach 
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the final answer.  Computer constructed Bayesian networks do not need constants and 

can find relationships directly between input and output variables. 

A second observation is the relationship between time and complexity.  Excluding 

the elevator control which was a rule-based controller as opposed to an engineering 

model, a linear relation can be seen between complexity and time of construction for both 

the equation models and the formula Bayesian network in figure 7-8.  This indicates that 

when using equations in either modeling package, that as the complexity of the modeling 

problem increases the time of construction increases exponentially.  By comparison, there 

is no observable relationship between complexity and time of construction for the human 

judgment or computer constructed Bayesian networks.  As previously described, the time 

of construction of computer-generated models is most heavily influenced by the size of 

the database and the amount of data generated by the neural network.  As models become 

more complex, more data is required to learn the relationships requiring more time to 

construct the model.  However, the rate of increase of time with complexity for 

computer-generated models is less than that for equation-based models.  This leads to a 

conclusion that the more complex the modeling problem, the greater the construction 

time savings the computer-generated Bayesian network will have with respect to an 

equation model.     

The cost of modeling and simulation is driven mostly by the human labor 

involved in the process.  Although computer equipment and software require upfront 

investments, the cost of computer run time once purchased is negligible.  Additionally, all 

demonstrations in this research have used commercial off-the-shelf equipment, software 
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products and software development packages.  The average times to perform specific 

tasks while constructing the models of appendices A, B and F are presented in figure 7-9. 
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Figure 7-9 

Model Construction Time Task Percentages 
 

As can be seen from the figure, not only has the average time of construction been 

reduced from 69 to 28 minutes, but the task loading requiring human work has been 

reduced from 100% in the equation-based model to 32% for the computer-generated 

Bayesian network.  Reviewing the breakdown of model task times contained in the 

appendices, as model complexity increases, total construction time increases.  However, 

the human tasks associated with model construction remain nearly constant.  Learning the 

network structure and constructing the neural network both require human input, but are 

computer-aided tasks.  The increase in construction time is almost completely attributable 

to increased computer run time of the BN Builder program.  This leads to a conclusion 

that models created using computer generated Bayesian networks would be much less 

expensive to build than equation-based models.  Not only is time of construction 

significantly less, but the human labor involved is also reduced.  Because there is no 
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longer a strong relationship between complexity and human labor required, costs to 

construct computer-generated Bayesian networks are not sensitive to problem 

complexity. 

 Tests results show that a computer-generated Bayesian network is not superior to 

an equation-based model in every case.  Each modeling method has certain advantages 

depending on specific circumstances of what is being modeled.  Based on test results, the 

following circumstances favor the use of an equation-based approach: 

• Validated equation-based models already exist 

• Modeling function blocks already exist 

• There is a scarcity of available data on what is being modeled  

• The element being modeled does not require many function points 

• Inputs and/or outputs are very different functions such as linear and non-linear 

data 

The following circumstances favor a computer-generated Bayesian network approach 

• Database of observed or test data already exists 

• Problem is not well understood and/or equations do not exist 

• Problem is complex 

• Input and output functions are similar 

• There may be unknown non-linearities 

• Hidden variable relationships may exist 

• Problem is a control application or decision problem 
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The conditions most favorable to computer-generated models are those with the greatest 

potential to reduce the time of construction and expense of modeling and simulation.  

Building an equation-based model is straight forward if equations exist and are readily 

available.  It is the complex problems where equations do not exist or non-linear elements 

are present that make it difficult and time consuming to define the problem using an 

equation-based approach.  The results of this research indicate that it is now possible to 

rapidly construct models of very complex systems.  Because cost is primarily driven by 

human labor required to construct models, this reduction in time and transfer of labor 

from human to computer should translate into greatly reduced cost.  The goals of the 

original research have been exceeded by not only demonstrating that Bayesian network 

engineering models can be created in less time at reduced cost, but that these models are 

more accurate than their equation-based equivalents.
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8. Integrating Equation-Based Models and Bayesian Networks 

 

Research results comparing equation-based models with Bayesian networks 

conclude that there is no single method that works best in all models or simulations.  

Each method has advantages and disadvantages depending on the specific circumstances 

of the problem.   Equation-based models and Bayesian networks are not mutually 

exclusive methods of modeling and simulation.  Based on the software development 

described in chapter 6.2, the two methods can now be used simultaneously within the 

same environment.  When modeling complex systems, the problem is usually broken 

down into smaller, simpler subsystems that are constructed, tested and then integrated 

into the final complex model or simulation.  This approach lends itself to creation of 

integrated models where each component to be modeled is individually evaluated to 

determine which modeling method would be best under the particular circumstances.  

Appendices D, H, I, J, L and M demonstrate the utility of this approach with integrated 

models that contain both equation-based elements and Bayesian networks working 

together to create a single simulation. 

Another problem in modeling and simulation has been how to mix models that 

have different levels of fidelity and resolution.  Chapter 3 presents an approach to multi-

resolution in which inputs to the model are represented as random variables, probability 

distributions are defined over their range of potential values, and Monte Carlo simulation
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is used to create multiple samples and calculate a final output distribution.  Because 

Bayesian networks are distributions, this method works well in an integrated modeling 

environment.  Appendices L and M demonstrate this approach by integrating Bayesian 

network subsystems that are of different fidelity and resolution from other equation-based 

sub-models. 

8.1 Bayesian Networks as Subsystems of Equation-Based Models 

Appendix L demonstrates the integration of the equation-based F-16 radar model 

of appendix E with the Bayesian network B-26 radar cross section model of appendix G.  

A second radar cross section of a 1/15 scale model of a Boeing 737 commercial aircraft is 

also constructed from unclassified test data. These models were constructed and validated 

from two entirely different sets of measured data using two different methods.  As such, 

these models have completely different fidelities and resolutions.   

To simulate a radar tracking engagement, an equation-based motion model is 

added to the other models.  The motion model allows the aircraft to fly across the 

viewing angle of the radar.  As the aircraft moves, both the range and aspect angle of the 

target to the radar changes between each radar sweep.  Example simulation tracks of each 

aircraft are shown in figure 8-1. 
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Figure 8-1 

Radar Tracking Simulations 

The radar begins to detect the B-26 just inside the maximum radar display range of 80 

NM.  The real world phenomenon of target scintillation, where the target returns fade in 

and out near the maximum detection range, is observed on the B-26 track.  Once the B-26 

moves closer to the radar, the return is so strong that a continuous track is maintained 

even as the aspect changes.  The much smaller model of the Boeing 737 aircraft is harder 

to detect.  The target is visible on the display for only a short time.  In this case, the target 

is detected not as a function of range, but of changing aspect angle.  The radar detects the 

aircraft as the target aspect shifts to the left side of the aircraft where a higher radar cross 

section exists as shown in figures L-5 and L-7 of appendix L.  The target detection is lost 
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as the aspect angle moves to the rear quarter which has a much lower cross section even 

though the target continues to get closer to the radar.  Although it is impossible to obtain 

test data to validate this integrated simulation, the results match the real world experience 

of the author in operating air-to-air pulse radars. 

 Appendix M provides an example of an engineering trade application where a 

system with a validated equation-based model exists.  This example uses a small robotic 

vehicle that can be easily modified so that model predictions can be compared to test 

data.  The problem looks at replacement of the two electric motors with a different pair of 

motors.  The problem is to predict the speed of the vehicle system with the new motors.  

Instead of building a new equation-based model of the motor, a Bayesian network model 

is created from test data of RPM of the motor at various torque loads and power settings.  

The Bayesian network model is then substituted for the existing motor model in the 

robotic vehicle model.  The test vehicle was also modified with the new motors to 

compare actual vehicle performance to the integrated model prediction.  Due to a 

difference in physical size, it was also necessary to change the drive system from gears to 

a belt and pulley system.  These parameters were entered into the model so that the model 

parameters matched the configuration of the test vehicle.  The test technique for testing 

the motors and the vehicle system were different resulting in the Bayesian network motor 

model having a different fidelity and resolution than the equation-based system model. 

 The equation-based model and the Bayesian network model were both used to 

predict the performance of the car under four different sets of conditions.  The mean of 

the prediction distribution is compared to the mean of the test data for both the baseline 
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equation-based model and the modified integrated model with the error shown in figure 

8-2. 
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Figure 8-2 

Robotic Vehicle Model Prediction Error 

As can be seen in figure 8-2, the average error over the four conditions tested is 

approximately the same.  As shown in appendix M, the distributions of the test samples 

all fell within the limits of the predictive distributions created by the models.  The 

average error of approximately 5% is within the accuracy of the test methods used to 

collect the performance data. 
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8.2 Bayesian Networks/Influence Diagrams Controlling Equation-Based Models 

 Appendix D provides an example where a Bayesian network is used to 

control an elevator.  Although the research of chapter 6 showed that there was a strong 

advantage to constructing control elements using Bayesian networks, it would be very 

difficult to accurately model the physical components of the elevator with a Bayesian 

network.  The elevator simulation includes a random people generator that assigns 

passengers to different floors and simulated desires to move to a different floor.  The 

elevator itself is constructed with measured delay times for movement, door open and 

close and maximum capacity based on measurements from the elevator in the Science 

and Technology Building II at George Mason University.  Additionally, the Extend M&S 

package has an animation capability allowing visualization of elevator operation.  All 

these factors support use of an equation-based approach to construct a model of the 

elevator.  Research showed that using a rule-based approach with an equation model for 

the control logic is difficult and time consuming to construct.  An integrated simulation in 

which control is provided by the Bayesian network and the other components of the 

elevator use an equation-based approach provided a superior solution with respect to 

speed of construction and simplicity. 

Appendix J demonstrates a similar simulation with a home heating system.  The 

baseline house with all its heat loss mechanisms such as the walls, windows, doors and 

roof are modeled with equation-based elements.  The heating system is also an equation-

based model.  The model is modified by replacing the single setting thermostat with a 

programmable thermostat that allows the temperature to change automatically four times 
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per day.  The programmable thermostat, which controls the heating system, is modeled 

using both an equation-based model and a Bayesian network.  The outside temperature is 

varied over a 24 hour period using temperature data for the Washington DC area for the 

month of January.  Each model is run using a Monte Carlo simulation with the results 

shown in figure 8-3. 
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Figure 8-3 

Home Heating System Simulation 

The programmable thermostats result in an average decrease in fuel consumption of 

approximately one gallon per day as compared to the baseline fixed temperature 

thermostat.  Because the thermostat was a simple model requiring very few elements to 
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construct, both models had similar outputs and took about the same amount of time to 

construct. 

Appendix H demonstrates the use of modeling and simulation in business process 

reengineering.  This example looks at screening of loan applications for approval or 

disapproval.  The baseline process uses two humans to screen loan applications to 

determine whether to approve them or route them to a second, more thorough review for 

final determination.  The baseline model is modified so that this initial screening process 

is replaced by a computer screening that conducts the initial review.  The modified model 

uses a rule-based approach to route the loan applications based on a simple set of 

screening rules.  The simplified rules identify any application that fails to meet a 

specified threshold value in several areas and routes any flagged applications for the 

second review by a human.  A Bayesian network model is also created that uses a file of 

previous loan cases to calculate the node probabilities.  The Bayesian network is 

implemented so that it routes applications whose attributes indicated less than a 75% 

probability of repayment for the second, human review.  The results of running the 

baseline model as compared to the two modified versions of the model over a 40 hour 

work period are presented in the simulations of figure 8-4. 
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Figure 8-4 

Loan Application Screening Simulation 

The rule-based screening process resulted in a process that was 18% less productive than 

the baseline human screening process.  By contrast, the Bayesian network model resulted 

in a 103% improvement in productivity.  This simulation demonstrates the importance of 

the use of modeling and simulation when considering process changes.  Although one 

would expect the introduction of automation to improve the productivity of a process, this 

example shows that this is not always the case.  In this case, complex interactions caused 

unintended consequences as described in appendix H. 

Appendix I is also a business process simulation.  The baseline simulation is a 

virtual representation of the electrical repair shop at an automotive center.  The baseline 
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simulation routes cars to one of three mechanics using a first in, first out routing process.  

The simulation is modified by recording reported symptoms that owners report when 

dropping off their cars for repair.  Not all reports are accurate.  The modified model uses 

a rule-based approach to route the cars based on a simple set of diagnostic rules that 

evaluate the reported symptoms.  Cars are then routed to the mechanic best suited to 

make the repair of the fault based on the diagnosis.  The model was modified again by 

replacing the rule-based procedures with a Bayesian network to diagnose the most likely 

problem.  Probability distributions for the network were learned from previous car repair 

cases.  Again, the cars are routed to the mechanics best suited to make the repair.  The 

average weekly gross income for all three simulations is presented in figure 8-5. 
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Figure 8-5 

Car Electrical Repair Simulation Gross Weekly Revenue 
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Both of the diagnostic routing procedures demonstrated improved performance over the 

baseline simulation.  The Bayesian network routing demonstrated a higher increase in 

weekly revenue with a 24% improvement as compared to the rule-based routing at 19%. 

 Appendix L uses an influence diagram as part of an air defense network to decide 

whether to fire a weapon in response to a radar contact.  A Bayesian network created 

using human judgment for node probabilities was modified into an influence diagram by 

the addition of a utility node and a decision node.  The utilities were set so that optimal 

decisions were made by firing at targets determined to be hostile while not firing at 

neutral or friendly targets.  The network was tested by integrating it with the radar/radar 

cross section model described in section 8.2 and as shown in figure L-11 of appendix L.  

The equation-based model determined some of the node states based on the motion and 

target aspect of aircraft.  Other states were generated by random number generators set to 

likely values of the type of aircraft.  Random errors and missing values were also added 

to the inputs.  A second version of the baseline influence diagram was created by adding 

arcs from the node “Identity” to nodes “EW” and “Kinematics”.  This was done to allow 

the network to include the airspeed of the target and whether the radar was on in 

determining if the contact was hostile.  The probabilities and utilities were then learned 

from the simulation. 

 A comparison of the two simulations is presented in figure 8-6. 
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Figure 8-6 

Air Defense Test Results 

As can be seen from the test results of figure 8-6, the simulation-trained network 

provided much better decisions and target identifications than the human-judgment 

baseline.  The baseline network correctly identified and recommended firing at all 

incoming missiles, but also recommended firing at 34% of friendly and 10% of neutral 

aircraft.  It also recommended shooting at 75% of MIG-29 aircraft based solely on 

aircraft type.  The test results demonstrated that the network had difficulty in determining 

the type of aircraft and a flaw in logic by using aircraft type as the primary determinate of 

whether it was hostile.  Additional arcs were added to change the logic to observe aircraft 

actions in determining hostile intent.  A decision policy was implemented that non-



153 

 

friendly aircraft flying towards the radar position at speeds greater than 500 knots with 

their targeting radar on were considered hostile.  By learning the probabilities and utilities 

from the simulation, the simulation-trained network provided much better decisions 

during tests recommending firing only at missiles and MIG-29s demonstrating hostile 

intent.  Provided that the simulation is an accurate representation of the real world, this 

example demonstrates a method for accurately training and testing of very complex 

influence diagrams. 

8.3 Discussion 

 The six examples presented above demonstrate that Bayesian networks and 

equation-based models can be used together to form an integrated simulation 

methodology.  Because there is no single method that is optimal in all circumstances, the 

integration of both types of models allows the model builder to choose different 

approaches for different subsystems, selecting the best approach for each subsystem.  The 

previously demonstrated capability to rapidly and accurately build Bayesian network 

models from data should allow the construction of new, complex models and simulations 

that are not feasible using a single method.  The ability to build rapid and inexpensive 

Bayesian network models also improves the capabilities of the modeling and simulation 

community to quickly conduct trade studies to determine if a proposed change to an 

existing system results in the desired outcome. 

 The radar tracking and robotic vehicle examples demonstrate that this technique 

can accommodate the requirement for constructing mixed-fidelity, mixed resolution 

models.  Measurement error in the data used to construct the Bayesian network will be 
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represented by a higher spread of values in a constructed Bayesian network.  The 

resolution of a Bayesian network is primarily a function of the number of bins used for 

continuous variables.  A Bayesian network constructed from a data set contains both a 

central tendency and spread that incorporates uncertainties from both the fidelity of the 

data and the resolution of the network.  Using this data with a Monte Carlo method in the 

equation models allows the calculation of probability distribution as the output.  This 

output provides not only a most likely answer, but the range of possible values that could 

possibly occur along with a probability for each possible range of answers.  This 

approach provides a more complete solution to an engineering trade study than 

conventional sensitivity analysis. 

 The research also demonstrated the use of complex simulations to train influence 

diagrams.  This approach allowed the network to test the outcomes of the decision 

options for different combinations of inputs.  The network learned the probabilities and 

utilities from the results of each simulation.  After many simulations, the network learned 

which decisions resulted in the most favorable outcomes.  Provided the simulation is an 

accurate representation of the real world, the trained and tested influence diagram can 

then be used as either a decision aid or autonomous decision system.  This approach may 

be particularly useful in future unmanned vehicle control systems where a high degree of 

autonomy is required.  The examples provided above demonstrate the feasibility and 

utility of integrating Bayesian networks and equation-based models.  The exploitation of 

this new capability should lead to multiple follow-on research projects.  This approach 
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may prove fruitful in a number of scientific disciplines that make use of models and 

simulations.
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9. Conclusions and Future Research 

 

Background research found that modeling and simulation is an important tool in 

the field of Systems Engineering.  This tool is one of the few that has demonstrated the 

simultaneous achievement of bringing a better product to market in less time at a lower 

cost.  These benefits apply to both large and small development efforts.  Unfortunately, 

the current high cost of modeling and simulation puts this tool out of reach of many small 

development efforts.  This is the result of current practice which uses an equation-based 

approach to modeling and simulation.  An equation-based model is only as good as the 

equations that make it up.  It is extremely difficult in complex system modeling to 

capture all the possible variables that may influence a problem and to define the relations 

between the variables using equations.  As model builders attempt to create high-fidelity 

models by searching for and adding additional variables and equations, the costs continue 

to spiral upward. 

The approach taken in this research was to explore the use of Bayesian network 

models as alternatives to equation-based models.  Bayesian networks have an advantage 

as they define relations between variables in terms of conditional probabilities.  Where 

equations-based models must use Monte Carlo sampling to generate a probability 

distribution over multiple computer runs, the Bayesian network can calculate these 

distributions in a single cycle.  The use of probability distributions not only provides 
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more complete answer to a problem by specifying both a central tendency and range for 

the answer, it also allows for the integration of models of mixed fidelity and resolution.  

The major drawback of Bayesian networks is the lack of good discretization techniques 

for continuous variables.  A second drawback is that if the probabilities were learned 

from an input data set, the completed network can only respond to discrete queries for 

data that were provided in the input learning set. 

9.1 Improvements to Discretization 

The first contribution of this research is to propose a new, multivariate approach 

for discretization of continuous variables.  This method was tested against four iterative 

search and score methods.  Results showed that the derivative method performed as well 

as the other four methods and was faster in all cases.  Based on this limited sample of 

discretization methods and data sets, a conclusion can not be made that this method is 

superior to any other discretization method.  Further research should be conducted to 

better quantify the results.  However, the method was much faster than any method 

evaluated and did not suffer from memory limitation problems experienced by the 

software implementing the iterative methods. 

There are a number of other potential follow-on research projects that should also 

be considered.  Metrics should be developed that allow the algorithm to determine an 

optimal number of cut points.  Iterative methods should be applied to the cut points 

determined by the derivative method to see if a better discretization can be produced in 

less time than starting with random cut points.  The derivative method should also be 

applied to iterative discretization and structural learning to see if better structures can be 
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obtained by alternately updating the discretization and structure between iterations until 

the two converge. 

The research also addressed limitations in current Bayesian network software 

packages where Dirichlet learning is used to learn the probability tables from data sets.  

This limitation can cause problems in continuous nodes with a large number of bins in 

that there may be residual probabilities in the cells which had no data values.  These 

probabilities, especially when the true answer lies near either end of the range of bins, 

can skew the central tendency and spread of the answer.  The research proposed to 

address this issue by substituting normal probabilities of the data in place of the Dirichlet 

probabilities in the continuous leaf nodes.  This approach provides an effective method of 

building high resolution Bayesian network models without loss of accuracy.  It also 

provides a method to incorporate additional uncertainty when predictions were added to 

the input data set. 

The implementation for this research was limited to continuous leaf nodes and 

normal probabilities.  This was all that was required as the examples tested were 

engineering problems where the outputs represented in the leaf nodes were the variables 

of interest.  The data sets were all expected to be normal distributions.  This is obviously 

not the case in all problems.  Future research should look at potential improvements to 

network performance if all continuous nodes are converted to probability distributions.  It 

should also look at determining what type of distribution best fits the data and use a 

distribution of that type in the continuous node probability tables. 
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9.2 Predicting Values for Incomplete Data Sets 

The second contribution of the research is the integration of neural networks into 

a Bayesian network construction algorithm.  This integration provides a number of 

advantages for Bayesian network construction.  The neural network can produce 

additional data for the input training set by predicting missing values or providing more 

data in areas that contain sparse observations.  The implementation allows the calculation 

and inclusion of uncertainties associated with the predictions to be included in the final 

Bayesian network probability tables.  The result is an output Bayesian network that can 

reason with inputs not provided in the input data set as long as the inputs are bounded by 

the input data.  The use of a neural network also acts to smooth scattered data sets 

insuring good performance of the derivative method discretization of continuous 

variables. 

The neural networks are currently constructed and trained as a separate process 

with the trained network used as an input to the Bayesian network build process.  Further 

research should be conducted into algorithms for construction of neural networks from 

data sets.  As software incorporates this capability, future research should look at 

computer constructed and trained neural network models.  Automation of the neural 

network construction and training process would further reduce the amount of human 

task time required to construct computer-generated Bayesian networks.  Additionally, the 

current software allows only a single neural network as input.  If construction of neural 

networks can be accomplished by computer, the software should allow the generation and 

use of multiple neural networks to predict missing values in any number of columns. 
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9.3 Alternatives to Equation-Based Models 

The primary focus of the research was to compare three methods of Bayesian 

network construction against equation-based models used as the baseline.  The first 

comparison looked at manually constructed Bayesian network models using human 

judgment for the probabilities.  The results of this comparison showed that Bayesian 

network models created using this method on average demonstrated lower accuracy and 

higher time of construction than the baseline models.  The research used 9 participants 

which added considerable time to the process to collect and analyze the predictions.  If 

using a single expert, the time to construct this type of model was about the same as the 

baseline.  The results of the individual predictions did not correlate well with the 

confidence factor assigned by the participants.  Even though some of the participants’ 

predictions were comparable in accuracy to the baseline, there was no method to 

determine which one was the best prediction.  Additionally, the participants with the best 

prediction for one problem did not have the best among all problems or even within 

different configurations of the same problem. 

The second comparison looked at Bayesian network models manually created 

using formulae with the baseline.  The results for both time and accuracy were very 

similar.  Because the same formulae were used, this comparison showed that there is no 

advantage to using a Bayesian network software package to implement an equation as 

opposed to an object modeling and simulation software package based on the two 

software packages chosen.  The Bayesian network model showed an advantage in 

calculating a more complete probability distribution as compared to Monte Carlo 
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sampling with an equation-based model when there were a large number of variables in 

the model.  The Netica Bayesian network software package did show some limitations 

with probability distributions of complex numbers.   

  The final comparison looked at computer-generated Bayesian network models 

constructed with software and algorithms specifically developed for this research.  Time 

of model construction was compared resulting in a conclusion that computer-generated 

models can be constructed more quickly than the baseline with 95% confidence.  This 

comparison assumes that the input data set is available for the learning of the structure 

and probabilities of the model.  A comparison of the two methods was also conducted to 

compare model accuracy.  The computer-generated Bayesian networks were constructed 

from an input data set that contained no observations for the combination of input 

parameters used to evaluate the accuracy.  The comparison resulted in a conclusion that 

the computer-generated Bayesian network models were more accurate than the baseline 

with 95% accuracy.   

This result was unexpected, as it was anticipated that the Bayesian network 

models would loose some accuracy during discretization of continuous data.  Studying 

the models, it appears that the combination of research work associated with derivative 

method discretization, neural network integration and substitution of normal probabilities 

into the node probability tables combined to allow creation of high resolution Bayesian 

networks.  These networks had very little loss in accuracy associated with disretization of 

continuous data.  The Bayesian networks were able to learn the presence of non-

linearities and unmodeled variables and/or relations from the data set.  The networks 
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were then able to apply these factors to different combinations of input values resulting in 

improved accuracy as compared to the baseline. 

The comparison also looked at the relationship between time of construction and 

model complexity.  The equation-based models showed an exponential increase in 

construction time with model complexity.  The computer-generated models did not show 

a strong correlation of time with complexity.  Computer-generated model construction 

times were most strongly correlated with the number of observations in the data set.  

Although more complex modeling problems will likely have larger data sets, this increase 

in construction time was almost solely attributable to longer computer run times.  There 

was little increase in human tasks associated with larger data sets or more complex 

modeling problems.  All problems evaluated were run on a commercial, off-the-shelf 

desktop computer, requiring no special equipment to construct the networks.  It is 

therefore concluded that computer-constructed Bayesian network models will reduce the 

cost of constructing models and simulations by simultaneously decreasing the time of 

construction and the human labor required for construction.  Further research is needed to 

quantify the savings.  Demonstration of a faster, less labor intensive method of model 

construction that is relatively insensitive to complexity while simultaneously improving 

model accuracy is the third contribution of this research. 

9.4 Challenges to the Conclusions 

One may challenge the conclusions based on the assumptions applied to the 

research problem.  The baseline equation models were constructed from formulae 

published in subject matter textbooks on the subject being modeled.  The equation-based 
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models were not able to take advantage of the test data that were used to create the 

computer-generated Bayesian networks under these conditions.  There is no argument 

that if the data were used, further tests were conducted and additional variables and 

equations were implemented in the equation-based models, their accuracy would improve 

and in most cases could probably be equal to that of the computer generated Bayesian 

networks.  Research indicates that this is current practice.  This approach is trading 

additional time to improve accuracy.  However, studies have also shown that this is 

precisely what drives up the cost of modeling and simulation development.  Such an 

approach only strengthens the argument that computer-generated Bayesian networks 

should be considered as an alternative to equation-based models.  The counter to this 

challenge is to ask why one would spend so much time and money achieving equivalent 

accuracy when computer-generated Bayesian networks allow the same accuracy to be 

achieved so much faster and presumably at greatly reduced cost. 

A second challenge may be to the assumption that test data is available to create 

the computer-generated Bayesian network.  Best practices for modeling and simulation, 

no matter what method is used for construction, requires that a set of test data be obtained 

and used to validate the model or simulation prior to use.  This validation data must cover 

the limits within which the model is used for predictions.  This is identical to the 

assumption used to construct the computer-generated Bayesian networks.  In this 

research, the time of data collection was unavailable in most cases as the test data were 

obtained from outside sources.  However, since it is required for any method used, it 

would be an equal addition to the times of any method.  Although the percentages and 
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confidence may change for how fast one method is as compared to another, the end result 

that computer generated models can be generated more quickly would not be different.  

The results of the model comparison also found that neither method was optimal in all 

situations.  Lack of good data with which to construct a Bayesian network model is one 

consideration that may result in an equation-based model being the best choice for a 

particular application.  A computer-generated Bayesian network model is not the best 

choice in every case. 

9.5 Integrated Bayesian Network/Equation-Based Modeling 

 Because a Bayesian network model is not the best solution in every case, the 

research makes a fourth contribution by demonstrating that Bayesian networks can be 

integrated with equation-based models and simulations.  This approach provides 

improved flexibility for model builders.  When constructing models of complex systems, 

these systems are usually broken down into subsystems and components which are 

modeled and then integrated together.  By demonstrating that Bayesian networks can be 

integrated with equation-based modeling and simulation, model builders can now pick 

and choose the best method to use for construction of lower level subsystems and 

elements.  This will not only provide for more flexibility, but may allow for simulation of 

systems that can not be done using current rule-based approaches. 

 The research also demonstrated that equation-based simulations can be used to 

train influence diagrams.  Through this process, the inputs and decisions are randomly 

generated and utilities based on the outputs of the simulation are calculated.  The 

influence diagram node probabilities are updated and the utility values are set for the 
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given decision at the end of each simulation.  After multiple simulations, the influence 

diagram learns which decisions result in the best outcomes for a given set of input states.  

Provided the environment of the equation-based simulation is an accurate representation 

of the real world, this provides an improved method for the training of complex influence 

diagrams. 

9.6 Summary 

This research has developed the necessary methods to construct mixed discrete 

and continuous data Bayesian networks from data sets.  Integration of neural networks 

allows prediction of additional data values expanding and smoothing the input data set.  

The result is the ability to construct a Bayesian network that can make probabilistic 

inferences to input conditions not in the input data set.  In demonstrations on multiple 

modeling problems varying from simple elements to complex systems, these Bayesian 

network models outperformed their equation-based equivalents in both accuracy and time 

of construction.  Because neither method was optimal in every case, the research 

demonstrated that Bayesian network models and influence diagrams could be integrated 

with equation-based models.  The end result is an expansion of capabilities that should 

provide increased flexibility for the model builder and reduced cost to the model 

consumer.  The results of this research are expected to result in the wider use of modeling 

and simulation in product development.  It is also expected to benefit many areas of 

science and engineering where models and simulations are essential tools of the trade. 



166 

 

 

 

APPENDIX A 

 



 

167  

A. Amplifier Models 

 

 This set of models is a virtual representation of an electrical amplifier with gain 

set to a value of two.  An electrical amplifier takes electrical signals as inputs, and acts as 

a multiplier where the output is the input signal times the gain of the amplifier.  The 

electrical wiring schematic of an amplifier circuit is provided in figure A-1. 

 

Figure A-1 
Amplifier Electrical Circuit Schematic 

 

The gain of the amplifier is determined by the equation: 

Gain = (1+R2) / R1.
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The minimum and maximum output values of the amplifier are limited by the input 

voltages that power the amplifier; +9V in the example of figure A-1. 

Test data were obtained by constructing the circuit of figure A-1 and using two 

types of input waveforms: a step waveform and a cyclic waveform.  The step waveform 

was created by switching a voltage source either on and off or back and forth between 

values at periodic time intervals.  The cyclic waveform was created by switching a 

voltage source on and off or back and forth between values to charge the circuit of 

appendix B.  The output of this circuit was then used as the input to the amplifier.  Test 

data were sampled using a Lego® RCX computer coupled with a high accuracy voltage 

measuring interface from Lego Dacta®.  Data were captured using LabVIEW® Software 

from National Instruments.  The number of samples was determined by using the Monte 

Carlo sampling technique described in section 2.1 for a width of a 0.1 volts and 95% 

confidence. 

A.1 Equation-Based Model 

The Extend equation model of this circuit is provided in figure A-2. 
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Figure A-2 

Amplifier Equation Model 
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As can be seen in figure A-2, an amplifier component was available in the modeling 

package eliminating the need to construct the circuit of figure A-1.  Equation-based 

modeling is considerably easier and faster if modeling elements already exist within 

libraries as compared to if they must be modeled from lower level elements. 

A.2 Human Judgment Bayesian Network   

The manually constructed Bayesian network model is provided in figure A-3. 

 

Figure A-3 
Amplifier Human Judgment Bayesian Network Model 

 
The probability tables were created through multiple predictions from nine volunteers 

who were provided with the test data shown in figures A-4 through A-8.   
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Figure A-4 

Amplifier Cycle 1 Test Data 
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Figure A-5 
Amplifier Cycle 2 Test Data 
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Figure A-6 
Amplifier Step 1 Test Data 
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Figure A-7 

Amplifier Step 2 Test Data 
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Figure A-8 

Amplifier Step 3 Test Data 
 

The volunteers were then provided inputs shown in figures A-9 and A-10.  These two 

samples were chosen so as to sample one of each type of waveform shown to the 

volunteers.  As previously described, the waveform generators were also circuits which 

were made from commercial electrical components available from retail electronic supply 

outlets.  The inductors, capacitors and resistors were purchased in standard, mixed lots of 

values.  Components for the input circuits were randomly selected from these standard 

values.  All measurements were taken over a two minute period.  Time constants for 
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switching of voltages were obtained by dividing the time period by random selections of 

even integers so that complete cycles were measured.    
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Figure A-9 

Amplifier Cycle Input Voltage 
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Figure A-10 
Amplifier Step Input Voltage 

 
The volunteers provided the predictions shown in figures A-11 and A-12.  Test data, 

which the volunteers did not see, is provided for comparison. 
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Figure A-11 
Amplifier Cycle Output Predictions 
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Figure A-12 
Amplifier Step Output Predictions 
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Participants were also asked to provide a confidence assessment between one and five for 

their prediction with five assessing very high confidence and one assessing very little 

confidence in the prediction.  These confidence assessments were used as a weighting 

factor during learning of probabilities.  For each individual, the prediction was counted 

the confidence assessment times one hundred during learning.  This results in a final 

probability table for the node “Output” where those who were more confident in their 

predictions had a greater impact on the final distribution than those who were not as 

confident. Confidence assigned was not an accurate predictor of accuracy.  A comparison 

of the error with confidence score is presented in figure A-13. 
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Figure A-13 

Amplifier Error versus Confidence 
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As can be seen from figures A-11 and A-12, some of the predictions were very accurate.  

However, there was no way to predict which score was the most accurate. 

A.3 Formula Bayesian Network 

 A second Bayesian network was created using the same formula as was used in 

the equation-based model.  This model is shown in figure A-14. 

 

 
 

Figure A-14 
Amplifier Formula Bayesian Network Model 

This network uses a uniform probability for the variable “Input” and the equations to 

table option to calculate the “Output” probability distribution. 
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A.4 Computer-Constructed Bayesian Network 

The final model created using the computer software described in section 6.1 is 

shown in figure A-15.  The relation was manually constructed since there are only two 

nodes in the network. 

 

 
Figure A-15 

Amplifier Computer Network Structure 
 

For the computer-generated networks, two separate models were created for the two 

different input functions.  This was done because a node can have only one discretization 

and tests conducted during development of the derivative method showed poor results 

when radically different data sets were discretized for the same node.  This condition is 

present in that the cycle input and output are linear functions while the step input and 

output are non-linear.   

A neural net model was constructed for each waveform.  The neural network is a 

fully-connected hybrid network containing two hidden layers with a sigmoid transfer 

function in the first and output layers and a Gaussian transfer function in the second 

Input
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layer.  The network structure was the same for both waveforms and is presented in figure 

A-16. 

 

 
 

Figure A-16 
Amplifier Neural Network Model 

 
The cycle network was trained using the average data shown in figures A-4 and A-5.  

This consisted of a data set with 100 observations for the cyclic network and 157 

observations for the step network. 

 The Bayesian network shown in figure A-17 was constructed using the test data, 

network structure of figure A-15 and neural network of figure A-16.  The network was 
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constructed using a manual bin setting of 40 bins, normal distribution and average 

variance. 

 

 
 

Figure A-17 
Amplifier Cycle Computer-Constructed Network 
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The Bayesian network shown in figure A-18 was constructed using the step test data, 

network structure of figure A-15 and neural network of figure A-16.  The step network 

used the average test database of 21 points.  The network was constructed using a 

selection of 20 bins, normal distribution and nearest value variance. 

 

Figure A-18 
Amplifier Step Computer-Constructed Network 

 
 

A.5 Model Comparison 

 The accuracy of each of the models for input values in figures A-9 and A-10 as 

compared to the test data is provided in figures A-19 and A-20 respectively.  Data are 
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compared for each test point at the maximum sampling rate of the test equipment which 

is 0.02 seconds. 

Error! Not a valid link. 

 
Figure A-19 

Amplifier Cycle Model Comparison 
 
 
 

Error! Not a valid link. 
 
 

Figure A-20 
Amplifier Step Model Comparison 

 
As can be seen in figure A-19, the amplifier amplifies the cyclic wave at very nearly the 

gain of two with no observable non-linearity.  All models do a good job of predicting this 

function.  The step function shown in figure A-20 has a non-linear region at the lower 

portion of the step.  This can be seen in figure A-10 as a small voltage of about 0.2 volts.  

As can be seen in figure A-20, this same 0.2 volt reading is also present at the output.  

The fact that there was no amplification as the signal was fed through the amplifier 

supports a conclusion that this is noise at the input and output of the amplifier.  The 

formula models both amplified this input resulting in predictions that were high at the 

lower portion of the step.  The equation-based Extend model and the formula BN had 

nearly identical results for the cyclic waveform but were slightly different for the step 

waveform.  This was due to the discretization of the continuous data in the formula BN.  

The human judgment and computer constructed networks both learned this phenomenon 
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from the learning data and did not amplify the noise.  The human judgment network 

underestimated the voltage at both the high and the low step.   

The average percent error for each model is presented in figure A-21. 
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Figure A-21 

Amplifier Average Percent Error 
 

The computer generated Bayesian network had the lowest error while the human 

judgment Bayesian network had the highest error in both cases.   

The time to complete the tasks required to build each model was recorded to the 

nearest minute.  The results are presented in table A-1.  The formula Bayesian network 

had the lowest construction time while the human inference network had the highest. 

Table A-1 
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Amplifier Model Construction Times 
 
 

Action in 
minutes 

Equation-Based 
Model 

Human 
Inference 
Bayesian 
Network 

Formula 
Bayesian 
Network 

Machine 
Learning 
Bayesian 
Network 

Construct Model  8 5 5 1 
Prepare Data 

Survey 
- 11 - - 

Collect Data - 83 - - 
Process Survey 

Data 
- 36 - - 

Construct Neural 
Network 

- - - 7 

Computer 
Generation of 
Final Model 

- - - 12 

Update 
Probabilities 

- 3 - - 

     
Total Time 

(mins) 
8 138 5 20 

 

 

As can be seen from table A-1, the collection and processing of data from human experts 

is a time consuming process.  On average, it took approximately 8 minutes per person to 

make the predictions and 4 minutes to process the data. 
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APPENDIX B 
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B. LRC Circuit Models 

 

 The models of this appendix are a virtual representation of an electrical circuit 

with an inductor, capacitor and resistor wired together in series and driven by a 9-volt 

battery.  The electrical wiring schematic of the circuit is provided in figure B-1.  The 

objective of the models is to predict the voltage across resistor R when the switch is 

closed at time zero. 

 
 

 

 
Figure B-1 

LRC Circuit Schematic
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The inductor, sometimes called a choke, resists a change in current flow.  This results in a 

delay in the rise of the voltage when the switch is closed.  The resistor determines the 

current flow in the circuit.  The capacitor is a voltage storage device.  If the capacitor has 

no charge, the full voltage will be present across the capacitor.  As the capacitor charges, 

the voltage will decrease until it approaches zero when fully charged. 

B.1 Equation-Based Model   

The equation for this circuit is 

Z(s) = R + s*L + 1/(s*C) 

Solving the equation using initial condition Z(0) = ∞ yields 

s2*L + s*R + 1/C = 0. 

Using the quadratic equation and solving for the roots yields 

s = -R/(2*L) + [R2/(4*L2) – 1/(L*C)]1/2. 

This equation has three solutions.  If the two roots are real and distinct, the solution is  

V = A1/R * exp(s1*t) + A2/R * exp(s2*t) 

A2 = -A1 

A1 = [V0/(L*s1)]/[1-(s2/s1)]. 

The other two solutions are for roots real and equal and for roots that are complex.  For 

the purpose of this model, only real and unequal root solutions are considered.  The 

Extend equation model of this circuit is provided in figure B-2. 
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Figure B-2 
LRC Equation Model 

 
In this case, there are no model elements for the components of the circuit.  The values of 

voltage (V), inductance (L), resistance (R) and capacitance (C) are individual inputs 

which are fed through a series of equation blocks.  Roots s1 and s2 are determined and 

the real solution for A1 and A2 is solved.  These values are used, along with time, to 

solve for the current in the circuit.  The voltage is then determined from the current and 

resistance.   
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B.2 Human Judgment Bayesian Network 

The manually constructed structure of the Bayesian network model for human judgment 

is provided in figure B-3. 

 

Figure B-3 
LRC Human Judgment Bayesian Network Model 

 
The probability tables were created through multiple predictions from seven 

volunteers who were provided with the test data shown in figure B-4.  Test data were 

sampled using a Lego® RCX computer coupled with a high accuracy voltage measuring 

interface from Lego Dacta®.  Data were captured using LabVIEW® Software from 

National Instruments.  The number of samples was determined by using the Monte Carlo 

sampling technique described in section 2.1 for a width of a 0.1 volts and 95% 

confidence.  The inductors, capacitors and resistors were purchased in standard, mixed 

lots of component values.  A two second measurement period was selected for test 

measurements.  Using the derived equations, a subset of components was selected that 

provided responses that could be measured over a two second period.  The components 
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for the tests were then randomly selected from this subset.  A deliberate attempt was 

made to find an inductor value that would provide a measurable delay in the voltage rise.  

Unfortunately, in this application a value of approximately one Henry would be required 

while the largest commercial value was 300 micro Henries.  The minimum sampling rate 

of 0.02 seconds was too great to measure the delay.  This resulted in test data where 

changing the value of the inductor had no measurable impact on the output of the circuit. 

Eight combinations of input variables were tested with the results provided in 

figure B-4. 
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Figure B-4 

LRC Test Data 
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These data were provided to the test volunteers.  The volunteers were asked to provide 

predictions for the following different circuit values: 1KΩ 220 μF 100 μH, 2.8KΩ 220 μF 

100 μH, and 2.8KΩ 220 μF 300 μH.  The three cases were chosen to look at predictive 

accuracy where one, two and all three input values were different than those shown to the 

participants.  This provided three problems that became gradually more difficult to 

predict. 

The volunteers provided the predictions shown in figures B-5 through B-7.  Test 

data, which the volunteers did not see, are provided for comparison.   

 
 

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (secs)

Vo
lts

 (D
C

)

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Test Data

 
 
 

Figure B-5 
1KΩ 220 μF 100 μH Predictions 
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Figure B-6 
2.8KΩ 220 μF 100 μH Predictions 
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Figure B-7 
2.8KΩ 220 μF 300 μH Predictions 
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Participants were also asked to provide a confidence assessment for their prediction. 

Assessments were on a scale of 1 to 5 where 5 corresponds to very high confidence and 

one corresponds to very little confidence in the prediction.  This confidence was then 

multiplied by one hundred and used as the number of times that the prediction was 

counted during learning of probability tables.  This resulted in a non-uniform prior for 

learning of the probability tables, ensuring that errors measured from this network were 

the result of the construction method and not residual probabilities caused by having only 

seven predictions. 

 The confidence assessments had mixed results when compared to predictive 

accuracy.  The 1KΩ 220 μF 100 μH predictions results were correlated between 

confidence and predictive accuracy as shown in figure B-8. 
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Figure B-8 

LRC 1KΩ 220 μF 100 μH Confidence versus Accuracy 



194 

   

All but one confidence assessment in the 2.8KΩ 220 μF 100 μH predictions was ranked 

as three.  The 2.8KΩ 220 μF 300 μH predictions showed an inverse relation between 

confidence and predictive accuracy as shown in figure B-9. 
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Figure B-9 

LRC 2.8KΩ 220 μF 300 μH Confidence versus Accuracy 

B.3 Formula Bayesian Network 

 Another Bayesian network model was created using the same formulae as those 

used for the equation based model.  The formula Bayesian network is presented in figure 

B-10. 
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Figure B-10 
LRC Formula Bayesian Network 

The formula Bayesian network model was first constructed using intermediate variables 

like the equation model of figure B-2.  When the equation to table option was executed, 

the variable “Volts Out” contained a mixture of real and imaginary numbers.  This was 

caused by a second order equation with both real and imaginary roots.  When the 

equation to table option is executed, each node with a formula calculates outputs for 

every combination of inputs.  Some combinations resulted in imaginary numbers which 

continued through calculations to the “Volts Out” node.  The network was modified to 

put all formulae into node “I” of figure B-10 to avoid the generation of imaginary 

numbers.  This is a limitation of the Netica software package. 
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B.4 Computer-Constructed Bayesian Network 

 The final model created using the software described in section 6.1 is shown in 

figure B-11.  The network structure was determined using the BN PowerConstructor 

program.  The program correctly found that the value of the inductance (L) had no effect 

on the outcome.   

 

Figure B-11 
LRC BN PowerConstructor Model 

 
The BN Builder program required a trained neural network as an input to predict cases 

that were not contained in the input training set.  These cases were the same ones the 

human volunteers were asked to predict.  The input neural network was a fully-connected 
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hybrid network containing two hidden layers with a sigmoid transfer function in the first 

and output layers and a Gaussian transfer function in the second layer.  The network 

structure is presented in figure B-12. 

 

 

 
 

Figure B-12 
LRC Neural Network Model 

 
The network was trained using the average data shown in figure B-4.  This consisted of a 

data set with 808 observations. 

 The Bayesian network shown in figure B-13 was constructed using the test data, 

network structure of figure B-11 and neural network of figure B-12.  The network used 
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the entire test database of 11339 observations.  The network was constructed using a 

fixed number of 40 bins, normal probabilities and average variance as input options. 

 

 
Figure B-13 

LRC Computer-Constructed Network 
 

B.5 Model Comparison 
 
 The accuracy of each of the models compared to the test data is provided in 

figures B-14 through B-16. 
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Figure B-14 

1KΩ 220 μF 100 μH Model Comparison 
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Figure B-15 
2.8KΩ 220 μF 100 μH Model Comparison 
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Figure B-16 
2.8KΩ 220 μF 300 μH Model Comparison 

 
The average percent error from the mean test data for each model is presented in figure 

B-17. 
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Figure B-17 

LRC Model Percent Error Comparison 
 

On average, the human judgment model had the worst accuracy while the computer 

generated Bayesian network had the best accuracy. 

The time to complete the tasks required to build each model was recorded to the 

nearest minute.  The results are presented in table B-1. 
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Table B-1 
LRC Model Construction Times 

 
 

Action 
(minutes) 

Equation-Based 
Model 

Human 
judgment 
Bayesian 
Network 

Formula 
Bayesian 
Network 

Machine 
Learning 
Bayesian 
Network 

Develop 
Equations 

27 - 27 - 

Construct Model  66 4 76 3 
Prepare Data 

Survey 
- 47 - - 

Collect Data - 85 - - 
Prepare Survey 

Data 
- 183 - - 

Construct Neural 
Network 

- - - 5 

Computer 
Generation of 
Final Model 

- - - 41 

Update 
Probabilities 

- 13 - - 

     
Total Time 93 332 103 49 

 

 

The human judgment model had the highest construction time while the computer 

generated model had the lowest.  The average time per human prediction was 

approximately 10 minutes while the average to process the data was 22. 
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C. NACA Wing Models 

 

 This set of models is a virtual representation of the lift coefficient produced by 

wing airfoil shapes.  The National Advisory Committee for Aeronautics (NACA), the 

forerunner of NASA, created a four digit nomenclature to identify wing shapes.  All 

numbers in the four-digit NACA wing identifiers are expressed in relation to the length of 

the wing chord which is the distance from the tip of the leading edge to the trailing edge 

of the wing.  The first digit identifies the maximum height of the wing mean line, a line 

equidistant between the upper and lower wing surface, expressed as a percentage of the 

chord.  The second digit identifies the distance from the leading edge that the maximum 

height is located expressed in tenths of the chord.  The third and fourth digits identify the 

maximum thickness of the airfoil expressed as a percentage of the chord.  These numbers 

are illustrated in figure C-1.
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Figure C-1 

NACA 2318 Wing Example 
 

A NACA-2318 wing has the mean line a maximum of 2% above chord with this 

maximum located 30% from the leading edge.  The maximum wing thickness is 18% of 

the chord. 

C.1 Equation-Based Model 

The equation model for predicting the lift coefficient was created by Kevin Jones 

of the Aeronautical Engineering Department at the Naval Postgraduate School.  This 

model is a public domain model and is used with permission from the author.  It can be 

viewed at http://www.aa.nps.navy.mil/~jones/online_tools/panel2/.  The model uses a 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean Line
Upper Surface
Lower Surface

First digit 

Second digit 

Third and fourth digits 

Wing mean line Wing chord 



206 

   

panel code method to compute the pressure differential over the wing surface by partial 

solution of the Navier-Stokes Equations for fluid flow.  Direct solution of the entire 

system of equations is not feasible, even with today’s powerful computers.  The 

coefficient of lift (CL) is then calculated from this pressure data.  The panel code method 

is limited to angles-of-attack in which flow separation does not occur and subsonic 

airspeeds.  Further information on the formulae and methods used can be found at the 

above web address.  The air pressure distribution for a NACA 2318 wing at 6.0 degrees 

angle-of-attack (AOA) is shown in figure C-2.  The angle-of-attack is the angle between 

the chord of the wing and the air stream impinging on the leading edge.  All data 

collected from this model were collected at a resolution of 100 panels, the highest 

possible resolution. 
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Figure C-2 
NACA 2318 Air Pressure Distribution 

 
C.2 Human Judgment Bayesian Network 

 
The manually constructed Bayesian network structure for human judgment is 

provided in figure C-3. 
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Figure C-3 
Human Judgment Bayesian Network Model 

 
The probability tables were created through multiple predictions from eight volunteers 

who were provided with the test data shown in figures C-4 and C-5.  Test data were taken 

from the book The Theory of Wing Sections by Abbott and Doenhoff and are based on 

wind tunnel tests.  All test data used is measured at a Reynolds Number of 6.0 x 106 

which provides a reasonable match to the limitations of the equation model.  No accuracy 

was provided for the measurements. 
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Figure C-4 

NACA Thin Wing Wind Tunnel Test Data 
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Figure C-5 
NACA Thick Wing Wind Tunnel Test Data 
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The volunteers were asked to provide predictions for NACA 1412 and NACA 4421 

wings.  These two wings were chosen so that one wing is a relatively thin airfoil while 

the second was a relatively thick airfoil.  The exact wing in each category was chosen at 

random.  The volunteers provided the predictions shown in figures C-6 and C-7.  Test 

data, which the volunteers did not see, are provided for comparison.   
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Figure C-6 
NACA 1412 Human Judgment Predictions 
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Figure C-7 
NACA 4421 Human Predictions 

 
Participants were also asked to provide a confidence assessment between one and five for 

their prediction with five assessing high confidence in their prediction and one assessing 

low confidence in the prediction.  Each confidence assessment was multiplied by 100 and 

to determine how many times that prediction was counted during learning of the 

probability tables.  The confidence assessments again did not have a strong correlation 

with predictive accuracy.  The comparisons for the NACA 1412 and 4421 wings are 

shown in figure C-8 and C-9. 
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Figure C-8 

NACA 1412 Confidence versus Accuracy 
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Figure C-9 
NACA 4421 Confidence versus Accuracy 
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C.3 Computer-Generated Bayesian Network 

 A computer model using the software described in section 6.1 was used to create 

a computer-generated model.  The network structure was determined using the BN 

PowerConstructor program and is presented in figure C-10. 

 

 

 
Figure C-10 

Wing BN PowerConstructor Model 
 

A trained neural network was required as an input to predict the two test cases.  These 

two cases were the same wing shapes the human volunteers were asked to predict.  The 
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neural network was a fully-connected hybrid network containing two hidden layers with a 

sigmoid transfer function in the first and output layers and a Gaussian transfer function in 

the second layer.  The network structure is presented in figure C-11. 

 

 

 
 

Figure C-11 
Wing Neural Network Model 

 
The network was trained using the data shown in figures C-4 and C-5.  The training data 

consisted of 252 observations. 
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 The computer constructed Bayesian network shown in figure C-12 was 

constructed using the test data, network structure of figure C-10 and neural network of 

figure C-11.  A fixed number of 40 bins were used and probabilities were created using 

the Netica learning algorithm.  The normal probability option was not programmed for a 

single continuous node with all discrete parents.  The probability tables were updated 

using the output learning set of the program and a frequency of 5000; the same weight if 

ten volunteers had all assessed a confidence of 5.  This number insured that accuracy 

comparisons were not influenced by residual probabilities in node “Cl” caused by the 

high number of bins selected. 
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Figure C-12 

Wing Computer-Constructed Network 
 
C.4 Model Comparison 

The accuracy of each of the models compared to the test data is provided in 

figures C-13 and C-14. 
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Figure C-13 

NACA 1412 Model Comparison 
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Figure C-14 
NACA 4421 Model Comparison 
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As can be seen in figure C-14, flow separation begins to occur at about six degrees AOA 

with an associated loss of lift.  The average percent error for each model is presented in 

figure C-15. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

NACA 1412 NACA 4421

A
ve

ra
ge

 %
 E

rr
or

Equation
Human Prediction
Machine Learning

 

 
Figure C-15 

Model Percent Error Comparison 
 

All three models had similar accuracy for the thinner NACA 1412 wing.  The equation-

based model had much higher error for the NACA 4421 wing.  This was caused by flow 

separation that caused a loss of lift at extremely low or high angles of attack.  The 

equation model could not predict that this loss of lift would occur.  Both the human 

judgment predictions and the computer-generated network learned that this phenomenon 

would occur in thicker wings, resulting in a more accurate prediction than the equation-
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based model.  The computer constructed Bayesian network had the lowest error in both 

cases. 

The time to complete the tasks required to build each model was recorded to the 

nearest minute.  The results are presented in table C-1. 

Table C-1 
Wing Model Construction Times 

 
 

Action 
(minutes) 

Equation-Based 
Model 

Human judgment 
Bayesian Network 

Machine Learning 
Bayesian Network 

Develop Equations - - - 
Construct Model  480* 4 3 

Prepare Data Survey - 47 - 
Collect Data - 77 - 

Process Survey Data - 183 - 
Construct Neural 

Network 
- - 5 

Computer 
Generation of Final 

Model 

- - 41 

Update Probabilities - 13 1 
    

Total Time 480* 324 50 
* The time for the equation model is an estimate from the author to build the model today 
using current modeling tools. 
 
 
 
Note that in these models the human judgment still has a high time associated with 

collecting the human predictions (307 minutes), but the total time is still less than that 

estimated to create the equation-based model.  The average time to make the two 

predictions was 11 minutes per person and the average time to process one pair of 

predictions was 26 minutes.  The data survey preparation time of 47 minutes is not 
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effected by the number of predictions.  The time to collect a single pair of predictions 

would be approximately 84 minutes. 
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D. Elevator Control Models 

 

 This set of models is a logical representation of the control system for an elevator.  

The model is constructed to demonstrate the differences in construction time between 

rules programmed in an equation-based modeling and simulation package and the same 

rules implemented in a Bayesian network.  Because all models implement a fixed set of 

rules, no optimization is required.  Accuracy is measured as the outcome of movement to 

determine if the elevator moved to the correct floor.  For the computer constructed 

network, it is assumed that a measuring device was placed on the elevator to record its 

operation over a time period sufficient to capture 1612 elevator movements.  Because 

attaching a recording device to an elevator control could possibly potentially impair its 

operation causing a safety issue, the data for the computer-generated Bayesian network 

was generated by recording the elevator movements of the equation-based model 

implemented in rules. 

There are four levels (ground, one, two and three) in the building that the elevator 

services.  The elevator has four selection buttons, one for each floor.  The ground and 

third floor each has a single call button.  The first and second floors each has two call 

buttons; one for up and one for down.  Each button can be either selected or not selected.  

The elevator can be headed in either the up or down direction of travel.  It will be at one 

of the four floors when a decision must be made as to which floor to move to next.  If no
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buttons are selected, the elevator remains at its current position.  There are therefore 8192 

possible combinations of these variables.  The control logic of the elevator is to continue 

to move in a single direction stopping where either a floor has been selected or a call 

button has been activated requesting movement in the direction the elevator is traveling.  

The elevator stops at the closest floor moving in its current direction.  When the elevator 

has either reached the ground or third floor or there are no buttons selected in the current 

direction, the elevator will reverse direction and begin the same logic in the opposite 

direction. 

D.1 Equation-Based Model 

The first part of the equation model, shown in figure D-1, determines whether a 

button has been pushed and which floors are currently requesting a stop. 
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Figure D-1 
Elevator Button Selection 

The buttons with a “D” prefix represent a selected destination while the “C” prefix 

represents a call button.  The suffixes “U” and “D” indicate the up or down directions.  

The output of the left column of OR gates is a generic set of conditions used to develop 

the rules.  For example, in the upper left block the output “G0” comes from input 

conditions ground destination button selected or ground call button selected.  The same 

rule will apply if either or both of these conditions are present.  This allows a set of 512 

rules to be developed to cover the 8192 possible combinations of conditions. 

The next portion of the equation model determines the direction and current 

position of the elevator and routes the program to the correct set of rules for that position.  

This is presented in figure D-2. 
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Figure D-2 
Elevator Position Rule Selection 

 
Figure D-3 displays the rule model for the ground floor.  There is a similar model for 

each of the other three floors.  The first block prevents the elevator from moving if either 

ground floor is selected or the ground floor call button is active since the elevator is 

already on the ground floor.  The second block sets the direction to “up” since that is the 

only direction the elevator can travel.  The third block checks to see whether any button 

has been depressed.  If no button is depressed, the elevator does not move and the control 

loops back to the beginning.  If a button has been depressed, the program is routed to the 

fourth block to determine which button(s) are depressed.  The fourth block determines to 

which floor the elevator will move.  This block starts from the top down and moves to the 

floor of the highest priority button selected.  The remaining blocks choose the floor and 

direction.  For example, if the first floor down call button were selected, the program 

would check first to see if either floors 1, 2, or 3 or call buttons 1 up, 2up or 3 were 

selected and then take the fourth branch which selects destination first floor and resets the 

direction to “down”. 
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Figure D-3 

Elevator Move Rules 

D.2 Manually Constructed Bayesian Network 

The manually constructed Bayesian network model is provided in figure D-4. 
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Figure D-4 

Elevator Manual Bayesian Network Model 
 

The probability tables were created by manually inserting the values into the network 

CPT tables by the author.  This was accomplished by manually entering a probability of 

100% in each row of the probability table for node “Destination” for the correct floor 

based on the input values.  A zero was entered into all other cells of the row.  As can be 

seen in figure D-4, the nodes “FU”, “FD”, “SU” and “SD” serve the same function as the 

OR gates in the equation model reducing the total number of rules required to cover all 

conditions.  All other nodes were set to uniform probability. 
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D.3 Computer-Generated Bayesian Network 

A model constructed by machine learning is presented in figure D-5.  The 

relationship was constructed using the BN PowerConstructor program. 

 

 
Figure D-5 

Elevator BN PowerConstructor Model 
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The network was trained using data generated by the equation model output.  This 

consisted of 1612 data sets.  This data set consisted of all discrete values and had no 

missing values.  Use of the BN Constructer program was not required. 

 The accuracy was the same for all models with each model sending the elevator to 

the correct floor.  The time to complete the tasks required to build each model was 

recorded to the nearest minute.  Times are for construction of the control system only and 

do not include integration with the elevator model for final test.  The results are presented 

in table D-1. 

Table D-1 
Elevator Control Construction Times 

 
 

Action 
(minutes) 

Equation Model Human Inference 
Bayesian Network 

Machine Learning 
Bayesian Network 

Develop Rules 9 9 9* 
Construct Model  197 120 8 

    
Total Time 206 129 17 

* Because the data was generated from the simulation instead of recording it, the time 
used to manually record the rules is assessed to the computer-generated model. 
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E. Radar Models 

 

 This set of models is a virtual representation of an airborne radar.  Radar is a 

search and tracking system that detects targets via electromagnetic transmission and 

reflection.  Pulses of radio energy are emitted by the radar transmitter into the air. If a 

radar reflective target is within the range of the radar, the pulse is reflected back from the 

target and is picked up by the radar receiver.  For airborne radar, the transmitter and 

receiver are collocated.  There are a number of variables that affect the maximum range a 

specific radar system can detect a target.  The AN/APG-66(V)2 radar, used on foreign 

export model F-16 aircraft, is the system that is modeled for this problem.  All data are 

unclassified.   

Detecting a target by radar is a very complex phenomenon.  There are two general 

properties of the influences that affect the radar signal: gains and losses.  Gains 

strengthen the signal and increase the range of the radar.  An example of a gain is the use 

of a focused antenna that concentrates the signal into a smaller area of space.  Losses 

weaken the signal decreasing the range of radar.  Covering the antenna with a radome to 

protect the radar and provide an aerodynamic outer surface to the fuselage of the aircraft 

results in losses as the signal must pass through the covering.
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E.1 Equation-Based Model 

To predict the maximum range of specific radar, the radar range equation has 

been developed.  This equation does not capture the entire complex phenomenon 

involved in actual radar operation.  It is a useful design tool to predict the relative 

magnitude of change a system will experience when a parameter in the equation is 

changed.  It is an excellent example of a system for which complete equations to describe 

its operation currently do not exist.  The radar range equation7 is 

Rmax = [(P * G2 * σ * λ2) / ((4π)3 * L * Pmin)]1/4 
Rmax is the maximum range 
P is the transmitter power 
G is the antenna gain 
σ is the target radar cross section 
λ is the radar wavelength 
L is the loss coefficient 
Pmin is the minimum receiver power 

 
Based on the published information in the Pilot’s Manual for the AN/APG-66(V)2 Fire 

Control Radar as Installed In the U.S. Naval Test Pilot School’s Airborne System 

Training and Research Support Aircraft manual, the factors affecting the losses are 

L = KT0 * Fn * Bn * RL * Squint * Xmit/Rec * Atmos * Fspace 
KT0 is Boltzmann’s constant times thermal noise 
Fn is the noise figure for the radar 
Bn is bandwidth noise 
RL is radome losses 
Xmit/Rec is transmitter/receiver losses 
Atmos is atmospheric losses 
Fspace is free space losses 

    
The radar range equation applies to a spotlight radar that continuously shines its beam on 

the target with the target in the center of the beam.  The actual radar tests were conducted 

                                                           
7 Equation from [Cohen et al. , 1992].  
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with the radar in search mode.  The beam of the radar in search mode is constantly 

moving over a fixed search volume in search of the target.  Thus, the target will be 

illuminated for only a small portion of each search.  As a result, the radar range equation 

would provide an over optimistic prediction for a radar that is scanning a search volume. 

 In order to better match the equation to a radar in search mode, a factor for search 

volume which approximates the effects of spreading the radar power over the search 

volume.  This introduces the terms θa / θbw and θe / θbh where θa is the horizontal sweep 

angle, θbw is the radar beam width, θe is the vertical sweep angle and θbh is the beam 

height [Stimson, 1983].  This modified version of the equation has the effect of spreading 

the radar power over the scan volume for each search scan.  Although not exact, this 

provides some additional losses to the denominator of the radar range equation to account 

for the scanning motion.  All data were collected in one bar 10 degree search mode.  This 

equates to an elevation sweep angle equal to the beam height and a sweep angle of 20 

degrees (+10 degrees of the nose).  The beam width is 3.25 degrees. 

Since the final equation is complex and contains both very large and very small 

numbers, a more convenient solution is to implement the equation in decibels.  A decibel 

is defined as  

dB = 10 * log 10 (x) 

where x is any of the variables in the radar range equation.  The numerator terms which 

are the gains of the system for the equation model of the radar are shown in figure E-1. 
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Figure E-1 
Radar Equation Model System Gains 

 
The denominator terms which are the losses in the system are shown in figure E-2. 
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Figure E-2 

Radar Equation Model System Losses 
 

The gains and losses are combined and the output is converted from dB to nautical miles 

as is shown in figure E-3. 
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Figure E-3 

Radar Equation Model Conversion to Nautical Miles 

E.2 Formula Bayesian Network 

 Predicting radar range given input parameters would be a difficult problem for 

anyone but a radar expert.  Since none was available, a manual Bayesian network model 

was created using the same formulae as the equation model.  The manually constructed 

Bayesian network model is provided in figure E-4. 
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Figure E-4 
Manual Bayesian Network Radar Model 

 
The probability tables were filled in using the equation to CPT table function using the 

same radar equations as the model of figure E-1. 

E.3 Computer-Generated Bayesian Network 

 For the computer-generated model, radar performance data for radars operating at 

similar frequencies were used and is presented in table E-1.  The available data only 

covered a target up to one dBsm in size.  Therefore, data for 10 and 20 dBsm were 

predictions obtained using the equation  

R2 = (R1
4 * (σ2 / σ1))1/4 

where R1 is the range at radar cross section σ1 and R2 is the calculated range at new σ2.  

The neural network used in construction of the final model could not be used for these 

predictions because the required prediction values were well above the upper bounds of 

the data set. 
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Table E-18 
Radar System Detection Ranges 

 
 

Name Freq (GHz) RCS (dBsm) Range (NMI) 
RASIT-3190B 9 0.001 5 
RASIT-3190B 9 0.01 9 
RASIT-3190B 9 0.1 16 
RASIT-3190B 9 1 28 
RASIT-3190B 9 10 50 
RASIT-3190B 9 20 89 

Unknown 9.1 0.001 6 
Unknown 9.1 0.01 10 
Unknown 9.1 0.1 17 
Unknown 9.1 1 31 
Unknown 9.1 10 55 
Unknown 9.1 20 98 

AN/GPN-22 9.1 0.001 7 
AN/GPN-22 9.1 0.01 12 
AN/GPN-22 9.1 0.1 21 
AN/GPN-22 9.1 1 31 
AN/GPN-22 9.1 10 55 
AN/GPN-22 9.1 20 98 

PAR 10 0.001 5 
PAR 10 0.01 9 
PAR 10 0.1 16 
PAR 10 1 28 
PAR 10 10 50 
PAR 10 20 89 

 
 

A neural network for the RCS and Range data was created and is presented in figure E-5.  

The neural network is a fully-connected hybrid network containing two hidden layers 

with a sigmoid transfer function in the first and output layers and a Gaussian transfer 

function in the second layer.   

                                                           
8 From [Kincaid, 1993]. 
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Figure E-5 
Radar Neural Network 

The computer-generated model created from the data of table E-1 and neural network of 

figure E-5 is shown in figure E-6. 
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Figure E-6 

Computer-Generated Bayesian Network Structure 

This network demonstrates both an advantage and disadvantage of computer generated 

networks.  In this case, it is not necessary to include all of the constants and intermediate 

variables of the radar range equation resulting in a much simpler model.  The model can 

accurately predict the range of a target of a given radar cross section.  However, changes 

in the output of a system caused by changing some of the variables not included in the 

Bayesian network model may be of particular interest in an engineering trade study. 

A comparison of test data with model predictions is presented in figure E-7.  

Aircraft types are not identified as radar cross section measurements are classified. 
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Figure E-7 

Radar Model Accuracy Comparison 
 

The average percent error for each model of figure E-7 is compared to the average 

detection range for each aircraft with results presented in figure E-8. 
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Figure E-8 

Radar Model Average Error 

As can be seen in figures E-7 and E-8, the radar range equation does a poor job of 

predicting actual radar range performance, even when the sweep correction is added. 

The construction times for each model are presented in table E-2. 

Table E-2 
Radar Model Construction Times 

 
 

Action 
(minutes) 

Equation Model Formula Bayesian 
Network 

Machine Learning 
Bayesian Network 

Develop Equations 124 124 - 
Build Database - - 31 

Construct Model  72 44 13 
    

Total Time 196 168 44 
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The computer constructed Bayesian network had the lowest time of construction.  The 

time for this particular model is higher than other computer generated networks due to the 

requirement to manually adjust the learning data set. 



244 

   
 

 

 

APPENDIX F 

 



 

245  
 

F. Forward Looking Infrared (FLIR) Models 

 

 This set of models is a virtual representation of the WF-360TL Forward Looking 

Infrared (FLIR) system.  This is an unclassified commercial system installed on a P-3 

aircraft.  FLIR systems detect targets using heat (IR energy).  The target must have a 

different temperature than the background in order for the target to be seen.  The target 

may be either hotter or colder than the background.  Because the FLIR detects IR energy, 

no visible light is required to detect an image.  However, humidity in the air absorbs IR 

energy and degrades system performance.  FLIR systems work best in dry air and when 

there is a very strong temperature differential between the target and background. 

F.1 Equation-Based Model 

FLIR systems are defined by two key specification parameters: the effective 

minimum resolvable effective temperature difference and the spatial cut-off frequency.  

The minimum resolvable temperature is the minimum difference between the temperature 

of an object and the temperature of the background behind the object for it to be visible 

on the display.  The effective temperature accounts for the environmental effects of 

humidity.  The greater the relative humidity, the greater the reduction in effective 

temperature difference from the actual temperature difference.   

The spatial frequency (SF) is related to the size of the target.  The SF formula is
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SF = SR / (2000 * TW) 
     SR = slant range in feet 
     TW = target width in feet 

 
The spatial cut-off frequency SFco is related to the field of view of the display.  Based on 

the display size and resolution, there is a range beyond which a target will not be seen on 

the display no matter how hot it is because it is too small to be seen on the display.  This 

FLIR unit has two display settings of Wide (WFOV) and Narrow (NFOV).  The WFOV 

has a look area of 11.1 degrees vertically and 14.8 degrees horizontally and the NFOV 

area is 2.7 degrees vertically and 3.6 degrees horizontally.  The display is a black and 

white video image.  Hot objects may be displayed in black with cooler objects in white if 

“Black” is selected on the polarity setting.  Similarly, hot objects are displayed as white 

with cooler objects in black if “White” is selected.  For this system, the effective 

minimum temperature differential is 0.10 degrees C and the SFco is 1.54 

cycles/milliradian (mrad) in WFOV and 6.33 cycles/mrad in NFOV.  The final point that 

defines the system is the minimum effective temperature at half the spatial cut-off 

frequency.  The specification value for this system is 0.33 degrees C.  The spatial 

frequency in cycles/mrad can be approximated by the formulae: 

T1 = (1 / cos(π / 4) – 1 / (ΔT1/2 – ΔTmin) 
T2 = π  / 2 / SFco 

 
where T1 and T2 are temporary variables, ΔT1/2 is the minimum effective temperature 

difference at ½ the cutoff frequency, ΔTmin is the minimum effective temperature 

difference at the cutoff frequency and SFco is the spatial cutoff frequency.  The spatial 

frequency is approximated using 

SF = (1 / T2) * acos(1 / (T1 * (EΔT - ΔTmin) + 1)) 
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where SF is the spatial frequency and EΔT is the effective temperature difference 

between the target and background. 

  A chart of system performance for both field-of-view settings is provided in figure F-1. 
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Figure F-1 

WF-360TL FLIR System Performance 
 

The final set of equations converts the spatial frequency to the range from the target.  The 

maximum range in feet at which a target can be seen is  

Rangemax = SFmax * 2000 * TW 
 

where SFmax = maximum spatial frequency for the EΔT and TW = target width in feet. 
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Any target that is at a range less than the one calculated in the above equation should be 

visible on the display.  The system has different spatial cutoff frequencies for the Wide 

and Narrow settings so each setting will have a different maximum range. 

The equation model for predicting FLIR detection range is shown in figure F-2. 
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Figure F-2 
FLIR Equation Model 

 
The switch at the top allows selection of either WFOV or NFOV.  The upper set of inputs 

provides the system specification values.  The lower box “Edelta T” provides a range of 
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effective temperature differential values to calculate the performance graphs on the right 

side.  Maximum range performance of the equation model is shown in figure F-3. 
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Figure F-3 

FLIR Equation Model Maximum Range Predictions 

There is a significant difference in maximum range of the system depending on which 

viewing mode is selected. 

F.2 Formula Bayesian Network 

 A Bayesian network formula model was manually created using the same 

equations as the equation model.  The network is shown in figure F-4. 
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Figure F-4 

Manual Bayesian Network FLIR Model 

The input nodes were set at uniform probabilities and the other node probabilities were 

calculated using the equation to table option in Netica.  The maximum range prediction 

for this model is presented in figure F-5. 
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Figure F-5 

FLIR Formula Bayesian Network Maximum Range Predictions 

These predictions are very similar to those obtained with the equation model shown in 

figure F-3.  Any differences are due to the discretization of the continuous data. 

F.3 Computer-Generated Bayesian Network 

Test data were provided by the U.S. Naval Academy Test Pilot School.  Data 

were recorded by students during training flights and have a high degree of scatter.  This 

is most likely due to measurement error as this was the first time many students had 

attempted to operate this equipment while recording the data.  This lack of operator 

experience may also explain why the values recorded were consistently less than those 

predicted by the equations.  FLIR displays require operator tuning of the system gain to 
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optimize the display.  The system also may not have been performing as well as possible 

because of age, coolant servicing or calibration issues.  Data were measured by flying at a 

temperature controlled measurement board with alternating hot and cold bars 1.86 feet 

wide.  When the operator could distinguish between two bars of different temperatures, 

the range and temperature delta were recorded.  The effective temperature difference was 

calculated after correcting for altitude and relative humidity.  Data were collected using 

both black hot and white hot polarity.  Test data are displayed in figures F-6 and F-7. 
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Figure F-6 

FLIR NFOV Test Data 
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Figure F-7 
FLIR WFOV Test Data 

 
  A computer-constructed Bayesian network model was constructed using 

the data of figures F-6 and F-7.  The network structure determined by the BN 

PowerConstructor program is provided in figure F-8. 
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Figure F-8 

FLIR BN PowerConstructor Model 

Note that the BN PowerConstructor program found a relationship between the polarity of 

the display and the slant range of the system.  Theoretically, there should be no difference 

in range caused by the polarity selection.  This option is provided to allow a preference 

for the operator as to viewing objects with the higher temperature objects showing as 

either black or white on the display.  However, plotting the data by polarity selection 

clearly shows two distinct sets of data as shown in figures F-9 and F-10. 
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Figure F-9 

FLIR Narrow FOV with Polarity 
 



256 

   
 

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16 18 20

Effective delta T (deg C)

R
an

ge
 (f

t) Black Test
White Test
Log. (Black Test)
Log. (White Test)

 
 
 

Figure F-10 
FLIR Wide FOV with Polarity 

 
Due to the unusual nature of the data, this discrepancy with theory was checked with the 

U.S. Navy Test Pilot School who confirmed the same observation. Since this anomaly 

does not appear in other systems, it is likely caused by a poorly designed display that 

generates a better picture in black hot than white hot. 

 The neural network for the FLIR model is presented in figure F-11.  In this case, 

the neural network is used for data smoothing of the highly scattered data set and 

generation of additional points for the learning database to ensure good probability 

distributions.  
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Figure F-11 
FLIR Neural Network Model 

 
The neural network is a fully-connected hybrid network containing two hidden layers 

with a sigmoid transfer function in the first and output layers and a Gaussian transfer 

function in the second layer.  The final Bayesian network model, constructed using the 

data of figures F-6 and F-7, the structure of figure F-8 and the neural network of figure F-

11 is presented in figure F-12. 
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Figure F-12 
FLIR Computer-Generated Bayesian Network Model 

 
The network was trained using the test data consisting of 71 observations. 

F.4 Comparison of Modeling Methods 

 Comparison of the models with the test data are provided in figures F-13 and F-

14. 
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Figure F-13 

FLIR Narrow FOV Model Comparison 
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Figure F-14 
FLIR WFOV Model Comparison 
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The average percent error for each model is presented in figure F-15. 
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Figure F-15 

FLIR Model Average Percent Error 
 

Figure F-15 illustrates a major advantage the computer-generated model has over the 

other two models.  The computer Bayesian network was able to locate the unmodeled 

variable “Polarity” resulting in two predictive curves for each field-of-view setting.  

These two curves represent the data much more accurately than the single curve of the 

other two models.   

 The time to complete the tasks required to build each model was recorded to the 

nearest minute.  The results are presented in table F-1. 
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Table F-1 
FLIR Model Construction Times 

 
 

Action 
(minutes) 

Equation-Based 
Model 

Formula Bayesian 
Network 

Computer 
Generated Bayesian 

Network 
Develop Equations 70 70 - 
Construct Model  35 38 4 
Construct Neural 

Network 
- - 7 

Computer 
Generation of Final 

Model 

- - 4 

    
Total Time 105 108 15 

 

 

As can be seen in table F-1, the computer generated model requires far less time to 

construct than either the equation-based model or formula Bayesian network. 
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G. Radar Cross Section Model 

 

 The radar cross section of an object is defined as that area which, when multiplied 

by the radar signal power density incident upon the target, yields a reflected power that, if 

radiated isotropically by the target, would result in a return back at the radar equal to that 

of the actual target [Masters, 1981b].  The radar cross section can be viewed as the 

effective area of a flat plate that would reflect the same amount of energy as the object 

measured in square meters [Knott et al, 1985].  For complex shapes, as radar energy 

strikes an object, the reflected energy is scattered in different directions depending on the 

shape of the object.  For most cases, the radar transmitter, receiver and antenna are 

located at the same position so the amount of energy is measured as the amount directly 

reflected back to the antenna from the object.  For simple geometric shapes such as 

cones, spheres, cylinders or plates, mathematical equations exist that can approximately 

calculate the radar cross section from the physical dimensions.  Even for these simple 

shapes, the radar cross section depends strongly on the aspect angle between the target 

and the radar.  It is also a function of the radar wavelength which is determined by the 

transmitter frequency.  Both of these influences can be seen in the examples of figure G-

1.
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Figure G-19 
Theoretical Radar Cross Section for a Flat Plate 

 
For these two examples, the ratio of the size of the plate (L) in relation to the wavelength 

of the radar is provided. 

Unfortunately, most real world targets are not simple geometric shapes.  One 

method of predicting the radar cross section is to break down a complex shape into 

simple geometric shapes.  This method may provide a rough prediction of the radar cross 

section across a sector of several degrees, but does a poor job of predicting the return at a 

specific aspect angle.  This is due to the multi-bounce phenomena where radar energy 

reflected from one part of a complex object may be reflected one or more times off other 

parts of the object.  These multiple reflections will then constructively or destructively 

interfere with each other on the return path to the radar receiver.  An airplane is an 

example of a radar target with a complex shape.  The radar cross section measurement at 

10 GHz for a B-26 aircraft is shown in figure G-2. 

                                                           
9 From [Shaeffer, 1992] 
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Figure G-210 

B-26 Radar Cross Section 
 

As can be seen from figure G-2, the radar cross section measurement can change 

radically for small changes in aspect angle.  Aspect angle can change because of motion 

of the target, the radar or both. The strong relationship between radar cross section and 

aspect angle explains why a target being tracked on radar may fade in and out at the edge 

of the maximum range of the radar as the aspect angle changes between radar 

transmission pulses.  Thus, the performance of a radar detection system can fluctuate.  

For this reason, radar performance is usually described in terms of detection probability 

as a function of range. 

 Computer programs capable of predicting multi-bounce returns from complex 

objects have been developed by both universities and industry.  These programs are 

complex and require special computer hardware to execute the extensive calculations.  

Many of these programs use optical methods to predict radar scattering.  This is 

                                                           
10From [Masters, 1981b] 
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accomplished by breaking down complex shapes such as aircraft into a group of simple 

geometric shapes.  An example of a geometric model of the A-10 aircraft using plates and 

cylinders is shown in figure G-3. 

 
 

 

 
 

Figure G-311 
A-10 Geometric Model 

 
Although these models are capable of predicting the general areas of high and low 

signature returns, they can not exactly predict the radar cross section of the actual 

complex shape.   

Developing an equation-based model is far beyond the scope of this research.  

The task of predicting radar cross section from complex shapes is also much too complex 

for human judgment.  This effort is therefore limited to a machine constructed Bayesian 

                                                                                                                                                                             
 
11 From [Ryan, 1992] 
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network.  A radar cross section model is created for the B-26 aircraft of figure G-2 using 

the Bayesian network construction software described in section 6.1.  The model uses 40 

bins and the normal probability option.  The Bayesian network model is presented in 

figure G-4. 

 

 

 
Figure G-4 

B-26 Computer-Generated Radar Cross Section Model 
 

The model predictions are compared to the test measurements in figure G-5. 
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Figure G-5 

B-26 Radar Cross Section Comparison 

The model prediction of figure G-5 shows the average cross section in square meters for 

the aircraft.  The network also provides the range of values over which the radar cross 

section may vary as shown in figure G-6. 
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Figure G-6 
RCS Bayesian Network Prediction 

As can be seen from figure G-6, the radar cross section for 0 – 11.8 degrees is 22.8 + 2 

square meters. 

 Another advantage of Bayesian networks is that individual networks can be 

integrated with each other to solve complex problems.  This is demonstrated by 

integrating the radar cross section model of figure G-6 with the computer-generated radar 
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model constructed in appendix E to calculate the probability of detection of the radar 

against this target.  The integrated model is shown in figure G-7. 

 

 

 
 

Figure G-7 
Integrated Radar-RCS Bayesian Network Model 

The probabilities in node “Range” are the individual probabilities for each bin at which 

the target will first be observed.  These probabilities can be combined to find the 

cumulative probability of detection as shown in figure G-8. 
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Figure G-8 

Cumulative Probability of Detection for B-26 Aircraft at 0-11.8 Degrees Aspect Angle 
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H. Loan Application Process Simulation 

 

The loan application process simulation is a virtual representation of the business 

processes used to approve or disapprove loan applications.  This model is used to 

demonstrate business process reengineering simulation.  The model looks at different 

screening processes used to route loan application forms through a loan application 

office.  Times used for the processes are those provided with the original model.  Due to 

privacy laws, actual loan application data was not available to test which method did the 

best job of screening the applications.  Applications were generated by a random 

application generator for screening.  Performance measurements are therefore limited to 

which processes can screen the most forms with the least amount of human labor.   

The original simulation is shown in figure H-1. 
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Figure H-112 

Loan Process Simulation
                                                           
12 Simulation provided with the Extend Version 5 software package.  Author unknown. 
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The process begins with applications coming into the office.  There are two workers in 

the operation.  Each application is given an initial review by a worker taking 12 to 16 

minutes per review.  If the application meets criteria set by the company for approval, the 

application is accepted.  If it does not meet the initial screening requirements, the 

application is then forwarded for a second, more thorough review which takes 25 to 35 

minutes after which a final determination of accept or reject is made.  The simulation is 

run for a 40 hour work week with results presented in figure H-2. 

 

 

 
Figure H-2 

Loan Screening Simulation Baseline Performance 
 

From figure H-2, the baseline performance for the two workers is 225 applications 

processed with a maximum backlog of 10 applications.  Worker utilization is 0.95 

meaning that the two workers are processing applications 95% of the time and are idle 

awaiting applications 5% of the time. 
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 The model of figure H-1 is next modified to investigate the improvements that 

could be achieved by automating part of the process.  The modified model is presented in 

figure H-3. 

 

 

 
Figure H-3 

Loan Application Rule Screening Modification 

The file generator is modified to produce the same number of applications but adds six 

attributes to each: credit history, marital status, age, income, assets and debt.  A random 

case generator was constructed to generate random cases that would generally follow 

demographic patterns and follow conventional knowledge concerning the likelihood of 

loan repayment.  The first part of the file generator is shown in figure H-4. 
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Figure H-4 
Age, Marital Status and Income Probabilities 

The applications are first assigned a marital status with 25% of applicants single, 45% 

married and 30% divorced.  Single people are then routed and assigned a random age and 

income that on average is lower than that of married or divorced people.  The process 

then continues in figure H-5. 
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Figure H-5 

Asset and Debt Probabilities 

The model looks at income and then assigns a random value for assets and debts; 

however, the routing is set up such that those with higher incomes have more assets and 

fewer debts while those with lower incomes have generally lower assets and higher debts.  

The process then continues in figure H-6. 
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Figure H-6 
Credit History and Risk Probabilities 

The final process calculates the difference between the sum of income and assets and the 

debt.  Applicants are then assigned a random credit history.  Those with high positive 

values of the calculation are assigned a higher probability of a good credit history while 

those with a negative score are more likely to have a bad history.  Intermediate scores are 

more likely to have intermediate credit ratings.  The final assignment of risk is whether 

the loan was repaid.  Those with good credit histories are more likely to repay than those 

with poor credit histories.  Those with intermediate credit scores have values in the 

middle.  The result is a wide combination of cases for review with trends that generally 

fit conventional wisdom with respect to the general population.  
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The first screening process done by workers in the baseline is replaced by a 

computer screening of the applications.  The first part of the computer screening process 

is shown in figures H-7. 
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Figure H-7 
First Loan Screening Process 

The loan screening process is designed to flag any application that has any negative 

information.  Applications which have no negative information are approved while those 

that contain one or more negative items are routed to the two workers for the second 

review.  The process begins in figure H-4 by first checking credit histories and flagging 

any file with negative information.  It then checks debt and assets to identify applications 

where debt is greater than assets.  If debts are greater than assets, it flags any application 

where the difference is greater than 20% of current income.  It then checks age and flags 

any application submitted by someone under 25.  The process continues as shown in 

figure H-8. 
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Figure H-8 
Second Loan Screening Process 

The process continues with a check to determine marital status.  Those who are divorced 

have their applications flagged.  Those who are single are flagged if they have less than 

$30,000 per year total income.  Those who are married are flagged if they have less than 

$50,000 per year total income.  This completes the screening process with all flagged 

files going to a second review with all non-flagged files approved without further action. 

 The simulation is then run to determine the impact on the loan application 

approval process.  The results are presented in figure H-9. 
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Figure H-9 

Loan Application Rule Screening Results 

The result is 184 applications processed with a maximum backlog of 41 applications and 

worker utilization rate of 100%.  At first glance, the results are opposite to what one 

would expect.  If the computer is doing the first screening of the applications and the 

workers now only have to do the second screening, why would it take longer?  After 

further investigation, it was determined that the criteria used to screen the applications on 

the first screening by the computer was stringent resulting in a much higher number of 

files being sent to a second review than occurred during the original process.  Because the 

second review is more thorough and takes longer, the end result was a higher workload 

for the two workers resulting in negative performance improvements by introducing 

automation into part of the process.  Although there was no intent to have the results 

come out this way, it does show the importance of modeling and simulation in business 
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process reengineering.  It also demonstrates that adding automation does not always 

result in a better process. 

 A second computer screening process change is also evaluated to determine its 

impact on the loan application process.  This approach is the same as described above 

except that instead of using the rule-based screening approach, the applications are now 

initially screened by a Bayesian network.  The Bayesian network is presented in figure H-

10. 

 

Figure H-10 
Loan Application Screening Bayesian Network 

The network structure was manually input and the probabilities were learned from a case 

file of previous loan applications.  This file was generated by the same case file generator 

as is used to generate the loan applications for the simulation with the additional 

information of whether or not the loan was repaid.  The simulation is the same as that 
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shown in figure H-3 except that the computer screening of applications is changed to that 

shown in figure H-11. 
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Figure H-11 

Loan Screening Bayesian Network Integration 

The network is opened and compiled on the first instance of an application.  All six areas 

of interest are set into their respective node states.  The program then retrieves the 

probability that someone with this set of factors will repay the loan.  If this probability is 

75% or higher, the loan is approved without further review.  If below 75%, the 

application is sent to the workers for a second review. 

 This simulation is now run under the same set of conditions.  The results are 

presented in figure H-12. 
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Figure H-12 

Bayesian Network Screening Results 

The result is 228 applications processed with a maximum backlog of 3 applications and a 

worker utilization rate of 0.58.  This demonstrates a substantial improvement over the 

original process.  Human labor has been reduced by nearly half.  If the model is rerun 

with only one worker for the second review, the results of figure H-13 are obtained.   
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Figure H-13 

Bayesian Network Screening with One Worker 

The result is 225 loan applications screened with a maximum backlog of 13 applications 

and a worker utilization rate of 100%.  This is the same number of applications screened 

with a maximum backlog increase of only 3 as compared to the original two review loan 

approval process. 

 The time to construct the screening portions of each model is presented in table 

H-1. 
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Table H-1 
Computer Screening Process Construction Times 

 
 

 Rule-Based Model 
(minutes) 

Bayesian Network Model 
(minutes) 

Construct Bayesian 
Network 

- 15 

Modify Loan Model 43 16 
Total 43 31 

 

 

Overall results demonstrate that the Bayesian network is far more effective in 

screening the application than the simplified rule-based screening process.  Although the 

case files were not real loan applications, this simulation does show that Bayesian 

networks can learn from previous loan applications.  The results should be no different on 

real applications as long as there the Bayesian network can adequately represent relevant 

patterns in the data. 
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I. Car Repair Process Simulation 

 

The car repair process simulation is a virtual representation of the electrical shop at an 

automotive repair facility.  The original simulation was constructed by the author and is 

shown in figure I-1. 
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Figure I-1 

Car Electrical Repair Simulation 
 

The process begins with cars coming into the service center.  The “Car Generator” block 

creates a stream of cars that come into the service center with reported electrical 

problems.  The model is set up to run on a standard 40 hour work week.  Most cars are 

dropped off in the morning although a smaller number come in throughout each day.  The 

“Car Generator” block is shown in figure I-2.
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Figure I-2 

Car Generator Block 
 

The cars are assigned one of four electrical problems as follows: 33% are bad batteries, 

22% have bad alternators, 25% have bad starters and 20% have short circuits in the 

electrical system.  Once the fault has been determined, the results of three diagnostics are 

assigned as follows: does the battery hold a charge, are the headlights bright or dim with 

the engine running, and will the car jumpstart from another battery.  In general, a car with 

a bad battery will not hold a charge, a car with a bad alternator will have dim headlights 
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when the engine is running, a car with a bad starter will not jumpstart and a car with a 

short circuit can have any of the above symptoms.  The diagnostics are not foolproof in 

that some problems may create multiple symptoms and people dropping off their cars 

may report symptoms in error.  Random noise of one to eight percent is added to each 

reported diagnostic to account for these variations.  The cars are then routed to a holding 

area until a mechanic is available to repair them.   

The electrical repair shop for this center has three service bays and three 

mechanics.  The “Service Center” block is shown in figure I-3. 
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Figure I-3 

Service Center Block 
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As the car enters the service area, the fault assigned to each car is retrieved and a time to 

repair is assigned.  The car will be delayed in the service bay during the simulation for 

this amount of time.  The three workers have different repair times for each repair.  The 

first mechanic is the least experienced while the third mechanic is the most experienced.  

While it would take about the same amount of time for each mechanic to change a bad 

battery, it takes the more experienced mechanic much less time to isolate and repair a 

short circuit than the inexperienced one.  The second mechanic and the other repairs have 

intermediate values assigned to each.  Once repaired, cars are routed to the “Exit and 

Stats” block. 

 The “Exit and Stats” block records the results for each car and calculates the 

statistics over a 52 week operating period.  The “Exit and Stats” block is shown in figure 

I-4. 
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Figure I-4 

Exit and Statistics Block 
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The fault along with each of the three diagnostics is written to a Microsoft Excel 

spreadsheet.  The number of cars repaired per week and the amount of money collected 

per week are also calculated.  The repair process is completed when cars exit the repair 

shop and are returned to their owners. 

 A second model was developed by modifying the initial car repair model.  

Whereas the baseline simulation routes cars to the mechanics on a first in, first out basis 

this second simulation uses a rule-based approach to sort the cars into four waiting areas.  

Cars are sorted by suspected fault based on diagnostic indications.  The sorting 

modification, which is added to the “Service Center” block, is shown in figure I-5.  
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Figure I-5 
Rule-Based Sorting 
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The rules are as follows: fails to hold charge only goes to area 1, dim headlights only 

goes to area 2, fails to jumpstart only goes to area 3 and everything else goes to area 4.  

This is designed to put cars with bad batteries in area 1, bad alternators in area 2, bad 

starters in area 3 and short circuits in area 4.  This ordering is the same as the degree of 

difficulty of each repair.  Mechanic 1, the least experienced mechanic, draws cars from 

areas 1 and 2; mechanic 2 draws from areas 2 and 3; and mechanic 3 draws from areas 3 

and 4.  This sorting is designed to send the most difficult repairs to the most experienced 

mechanic, who can repair them the most quickly.  Drawing from two different holding 

areas is designed to ensure that no one is idle awaiting a car to repair. 

 A third variation of the model was created using an influence diagram that makes 

a decision as to which holding area the cars are routed based on maximizing the profit to 

the repair shop.  The influence diagram relations are a naïve Bayes model and were 

manually created.  Probabilities were learned from the data captured in the Excel 

spreadsheet as an output of the baseline model.  The influence diagram is presented in 

figure I-6. 
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Figure I-6 

Influence Diagram Decision Model 

The network communicates with the simulation via the blocks shown in figure I-7. 
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Figure I-7 
Car Repair Network Integration 
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The network is opened and compiled once the first time a vehicle comes through.  The 

indicators are applied as evidence to their respective nodes in the influence diagram.  

Based on the diagnosis of the fault, the influence diagram then makes a decision as to 

which holding area the car is routed based on optimizing the profit. 

   The three different simulations were run for 52 weeks each.  Repairs are billed on 

a fixed-price basis dependent on the actual fault.  The results are presented in figure I-8.  
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Figure I-8 

Car Repair Simulation Comparison 

As can be seen in figure I-8, all methods result in Gaussian distributions.  Routing the 

cars based on an initial diagnosis results in improved revenue for the repair shop over the 
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first in, first out baseline.  Rule-based routing on average was 19.3% higher than the 

baseline data while the influence diagram routing was 24.0% higher.  Influence diagram 

routing was more effective than rule-based routing because it had a higher rate of 

correctly diagnosing the problem.  The rule based approach used a simple screening to 

attempt to match the symptom most associated with a fault to that fault while diagnosing 

anything else as a short circuit.  The influence diagram learned from previous data which 

symptoms were associated with which faults.  It was therefore more successful in 

diagnosing faults from a noisy data set. 

 The time required to construct the diagnostic models is presented in table I-1. 

Table I-1 
Car Diagnostic Model Construction Times 

 
Actions 

(minutes) 
Rule-Based Model 

(minutes) 
Influence Diagram Model 

(minutes) 
Build Influence Diagram - 8 
Modify Baseline Model 34 22 

Total Time 34 30 
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J. Home Heating System Simulation 

 

 The home heating system simulation is a virtual representation of a house with an 

oil furnace in the Washington DC area during the month of January.  The model 

represents a single story, 1875 square foot house with three doors and ten windows.  The 

model contains handbook insulation values for the materials selected.  The baseline 

model is shown in figure J-1. 

 

 

 
Figure J-113 

Home Heating System Model
                                                           
13 Model modified by the author to discrete operation from a model provided with the Extend M&S 
package.  Original author is unknown. 
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The model consists of a house which is subjected to heat losses and gains.  Losses occur 

through the roof, walls, doors and windows shown at the top.  The amount of heat loss is 

a function of the outside air temperature which varies over each 24 hour period.  The air 

temperature is a sinusoidal function that varies between the high and low temperature of 

each day.  Heat gains are provided by the furnace element on the left side of the figure 

which is controlled by a thermostat at the right side.  The baseline thermostat model is 

shown in figure J-2. 
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Figure J-2 
Baseline Thermostat Model 

The thermostat is set at 68 degrees F and has a 2 degree hysteresis (furnace turns on at 66 

degrees and off at 70 degrees).   

 The model is executed over a 24 hour period simulating the interactions of the 

house and furnace with the outside environment.  The temperature data are provided in 

figure J-3. 
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Figure J-3 
Baseline Temperature Data 

The blue lower line displays the outside air temperature which varies from a low of about 

20 degrees F to a high of about 40 degrees F.  The upper line displays the inside air 

temperature which varies between 66 and 70 degrees F as the furnace cycles on and off 

throughout the day.  The fuel consumption for one 24 hour period is shown in figure J-4. 
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Figure J-4 

Baseline Fuel Consumption Rate 

The consumption varies over the period with outside air temperature.  Consumption is 

higher in the first half of the period corresponding to the low temperature portion of the 

outside air temperature curve shown in figure J-3 and lower in the second half where 

outside temperatures are higher.  Fuel consumption for 24 hours under these conditions is 

9.4 gallons. 

 The model is then modified with a programmable thermostat.  The thermostat can 

change the temperature setting four times per day.  The modified thermostat model is 

shown in figure J-5. 
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Figure J-5 
Programmable Thermostat 

The thermostat is set as follows: 62 degrees from 10 PM to 6 AM, 69 degrees from 6 AM 

to 9 AM, 66 degrees from 9 AM to 5 PM and 68 degrees from 5 PM to 10 PM.  The 

model is then run over a 24 hour period to simulate the interactions of the house with the 

outside environment with the results shown in figure J-6. 

 

 
 

Figure J-6 
Temperatures with Programmable Thermostat 

Figure J-6 shows the four changes to the inside air temperature as the result of inserting 

the programmable thermostat. 
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 The baseline model is modified a second time using a Bayesian network model of 

a programmable thermostat.  The temperature settings are the same as those used for the 

programmable thermostat described above.  The Bayesian network model is shown in 

figure J-7. 

 

 
Figure J-7 

Bayesian Network Programmable Thermostat 

The network has three root nodes with “Temp1” for the current inside air temperature, 

“Time” for the time of day with each state set to a value of the thermostat setting for that 

period and “Status” for the current status of the furnace (on or off).  The “Power” node 

uses a formula to determine if the furnace should be switched on or off with “<0” being 

the switch on command and “>=0” being the switch off command.  The thermostat of 

figure 6 is then integrated into the baseline model by replacing the thermostat of figure J-

2 with the one shown in figure J-7. The integration blocks are shown in figure J-8. 
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Figure J-8 
Bayesian Network Thermostat Integration 

In the first row of blocks, the model first determines which of the four time periods it is 

in based on the time of the simulation.  The model then sets the current inside air 

temperature and the status of the furnace.  In the second row, the Bayesian network is 

opened and compiled on the first iteration of the simulation.  The three states of nodes 

“Temp1”, “Time” and “Status” are then set in the Bayesian network.  The most likely 

state of node “Power” is retrieved which is then used to switch the furnace on or off in 

the simulation.  The simulation is then run over a 24 hour period with results shown in 

figure J-9. 
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Figure J-9 
Bayesian Network Thermostat Simulation 

As expected, the result is a plot very similar to the results of the equation programmable 

thermostat simulation. 

 Each model is then set to use a random normal distribution for the high and low 

temperature of each 24 hour period using the mean and standard deviation for 

temperature in the Washington DC area for the month of January.  The simulations are 

then run 30 times to calculate the fuel consumption distribution.  The results are shown in 

figure J-10. 
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Figure J-10 
Daily Fuel Consumption Comparison 

The model timer and the Bayesian network timer simulations produced nearly the same 

result.  Both simulations that used timer thermostat models showed an average daily fuel 

consumption of approximately one gallon less than the fixed thermostat of the baseline 

simulation. 

 The time required to create the two timed thermostat models is shown in table J-1. 
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Table J-1 
Thermostat Model Construction Times 

 
 

Actions 
(minutes) 

Equation Timer Model Bayesian Network Timer 
Model 

Model Construction 28 17 
Model Integration 5 24 

Total 33 41 
 

 

Both timer thermostats used equations in the model construction.  As expected, both 

simulations provided about the same results and took similar times to build. 
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K. Commuter Simulation 

 

 The commuter simulation is a virtual representation of driving an automobile 

from Defense Acquisition University at Fort Belvoir, VA to the author’s home in Oakton, 

VA during rush hour traffic.  This is a difficult model to build using conventional 

equation-based techniques because of a number of uncontrollable random factors such as 

traffic density, accidents and weather which influence the outcome.  It also demonstrates 

the capability of the derivative method to discretize large numbers of continuous 

variables simultaneously.  The baseline equation model is shown in figure K-1. 
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Figure K-1 

Equation Commuter Model
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The model consists of all of the route segments and traffic lights along the entire trip.  On 

route segments, the model assumes the car will travel at the average speed limit for that 

leg.  The traffic lights are empirical probability tables that generate a random delay based 

on measured values of the red and green cycle times of each light.  A yellow light is 

considered part of the green cycle time since it is permissible to go through a yellow 

light.  As an example, if a light has a 25 second time of green and then a 25 second time 

of red, the probability would be 0.5 for zero delay and 0.1 each for 5, 10, 15, 20 and 25 

second delays.  Although this ignores timing of multiple lights to coordinate traffic flow, 

only three lights were sequenced in the direction of travel for this model.  Rush hour 

traffic is usually backed up on those segments negating any impact of the sequencing.  

The car moves from top to bottom through all legs and lights in figure K-1 and the total 

time is calculated.  A Monte Carlo simulation is run 10,000 times to generate a 

probability distribution of the total driving time.  The output distribution is shown in 

figure K-2. 
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This results in an approximately Gaussian distribution with mean of 33.60 and standard 

deviation of 1.30 minutes. 

 A manually constructed Bayesian network model was created using the same data 

and assumptions as the equation-based model of figure K-1.  The Bayesian network 

model is presented in figure K-3. 

 

 

 
 

Figure K-3 
Manual Bayesian Network Commute Model 

The model of figure K-3 is constructed with all traffic light delays on the left side and all 

leg driving times on the right.  The center nodes use an equation to sum the inputs of the 

driving and traffic light delay times.  The “Commuting Time” node in the center is the 
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sum of all the nodes along either side.  The Bayesian network also calculates a Gaussian 

distribution shown in figure K-4. 

 

 

 
 

Figure K-4 
Manual Bayesian Network Commute Time Distribution 

This distribution has a mean of 32.9 and standard deviation of 4.2 minutes.  The mean is 

very similar to that obtained with the Monte Carlo simulation shown in figure K-2.  

However, the standard deviation is wider and more accurately reflects the total possible 

spread of values.  This demonstrates an advantage of using Bayesian networks in 

complex systems with multiple random variables.  The probability of all traffic lights 

being green is 0.0027 while the probability of arriving at all signals just as they turn red is 

5.69E-13.  While the Bayesian network was able to calculate the total probability range in 

one computer cycle, a Monte Carlo simulation of the equation-based model would have 

to run 1.76E12 samples in order to theoretically capture the rare event of arriving at all 

the traffic lights as they turn red. 
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 A third model was constructed using measured travel times over the route 

described above.  Additional information including the day of the week the trip was made 

and the start time of the trip were also recorded.  BN PowerConstructor was used to 

determine structural relationships which are shown in figure K-5. 
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Figure K-5 

Computer-Constructed Commute Model 

A relationship was found between the day and time of departure and other nodes of the 

network.  BN Builder was then used to reconstruct the model using the software 

described in section 6.1.  This required the simultaneous discretization of 29 continuous 

nodes.  The distribution of node “Total” is shown in figure K-6. 
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Figure K-6 
Computer Bayesian Network Commute Time Distribution 

This simulation had a non-Gaussian distribution with a mean travel time of 47.6 minutes.   

The error percentage from the mean value of each prediction to the measured 

mean of 46.46 minutes is presented in figure K-7. 
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Figure K-7 

Commute Simulation Error Comparison 

This shows that many factors such as traffic, weather, accidents, etc. that are difficult to 

quantify when constructing a model prior to collection of data do have a significant 

impact on the outcome. 

 The equation model of figure K-1 was updated to include the measured data used 

to create the computer generated model.  The traffic light delays remain the same but the 

leg times are replaced with a normal distribution of the measured data for each route leg.  

A Monte Carlo simulation is then run with 10,000 samples with the results shown in 

figure K-8. 
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Figure K-8 
Updated Equation Monte Carlo Simulation 

This results in a Gaussian distribution with a mean commute time of 44.83 and standard 

deviation of 5.98 minutes.  The Bayesian network model of figure K-3 was also updated 

with the data collected from driving the route.  This data was used to update all root 

nodes (both leg times and light delays).  The updated network has a Gaussian distribution 

of driving times presented in figure K-9. 

 

 

 
 

Figure K-9 
Updated Bayesian Network Commute Time Distribution 
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This distribution is Gaussian with a mean driving time of 48.7 and a standard deviation of 

9.2 minutes. 

 The updated models were tested using three additional commute times which 

were not used in the probability updates.  The percent difference of the prediction means 

from the measured values are compared in figure K-10. 
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Figure K-10 

Commute Model Error Comparison 

Even when updated with the measurement data, both of the Bayesian networks had lower 

errors than the equation-based model.  The times required to construct each of the three 

models in presented in table K-1. 
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Table K-1 
Commuter Model Construction Times 

 
Action 

(minutes) 
Equation Model Manual Bayesian 

Network 
Machine Learning 
Bayesian Network 

Lay Out Route and 
Calculate Distances 

40 40 - 

Measure Light 
Times and Calculate 

Probabilities 

95 95 - 

Construct Model  74 107 6 
Computer 

Generation of Final 
Model 

- - 3 

    
Total Time 209 242 9 

 

 

 This particular example demonstrates two additional advantages of using 

Bayesian networks.  First, the manually created network is constructed such that all times 

are independent of each other (each input node has a series of arcs that goes from that 

node to the total time node without going through another input node).  This network can 

be used to refine the prediction of travel time as the route is traversed.  As the actual 

travel time for each leg or delay time for each light is entered, the mean travel time is 

updated and the spread of possible values is reduced.  This is demonstrated in figure K-11 

where approximately two-thirds of the route is traversed with the times entered. 
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Figure K-11 
Commute Time Prediction at Halfway Point 

Comparing figure K-11 with figure K-9, one can see that the new mean travel time 

prediction is now 42.2 and that the distribution spread has been significantly reduced.  

Although it is possible to do the same prediction with the equation-based model, the route 

and light values would have to be changed from probability distributions to constants and 

the Monte Carlo simulation run for another 10,000 iterations.  This is certainly not 

feasible for real time updates of the travel time predictions. 

 A second advantage is that Bayesian networks can find unmodeled relationships 

which influence outcomes.  The computer generated network in figure K-5 found that 

both the day of the week and the time of departure influenced the network time variables.  

These two variables are the only controllable variables that are inputs to the models.  If 

one is only interested in the probability distribution of total driving time, the network 

structure of figure K-12 is obtained from BN PowerConstructor if data values “day” and 

“time” are declared root nodes and “Total” is declared a leaf node. 
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Figure K-12 
Simplified Commute Network Structure 

Using BN PowerConstructor ensures that there are in fact relations between “day” and 

“Total” and “time” and “Total”.  There are only 25 test measurements so that every cell 

does not have test data for a probability calculation.  The neural network option can be 

used to predict times for day/time combinations that were not measured.  The neural 

network is shown in figure K-13. 
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Figure K-13 
Commute Neural Network 

The three element data set, the structure of figure K-12 and neural network of figure K-13 

are used as inputs to the BN Builder software with the output network shown in figure K-

14. 
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Figure K-14 
Day/Time Commute Model 

This model can now make a probabilistic prediction of commute time based on inputs 

“day” and “time”.  For example, if it is Tuesday the model predicts that the average 

commute time is 52 minutes and one should leave between 4:48 and 4:54 PM to 

minimize driving time.  If one wishes to be 90% confident of arriving home by 6 PM on 

Wednesday, then departure can be no later than 5:05 PM.  The same types of predictions 

are not possible using an equation-based model without dramatically increasing the 

complexity of the model.  Although the light times would remain the same, each leg of 

the journey and departure time period would need a separate random probability 

distribution for each day of the week.  This particular example shows strong advantages 
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of using Bayesian networks when modeling complex, ill-defined systems where the 

outputs will vary over a range of values. 
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APPENDIX L 
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L. Integrated Radar/RCS and Air Defense Models 

 

L.1 Integrated Radar Tracking Model 

Appendix G provides an example of a radar cross section model of the B-26 

aircraft shown in figure G-6.  Appendix E provides an equation-based model of the F-16 

radar shown in figures E-1 through E-3.  The equation-based radar model was adjusted 

with additional losses so that the model results validate with the test data.  In this 

example, it is assumed that the validated radar model now already exists.  The aircraft 

will be tracked by the radar requiring a motion model.  Because object motion is a well 

defined problem for which validated equations exist, an equation-based model is used for 

motion.  The motion model is shown in figure L-1.   
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Figure L-1 

Integrated Radar/Target Motion Model
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The first blocks on the left open the Bayesian network and set heading, airspeed, altitude 

and initial position of the target.  The rest of the blocks set those conditions as attributes 

in the simulation and calculates the movement of the aircraft between radar scans and the 

aspect angle of the target.   

The RCS of the target, as previously described, is a complex problem for which 

good equation-based methods do not exist.  A computer constructed Bayesian network is 

chosen for this element of the model.  The Bayesian network model integration is shown 

in figure L-2. 
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Figure L-2 
Integrated Radar/Target Bayesian Network Integration 
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The upper blocks set the aspect angle into the Bayesian network and retrieve the mean 

and standard deviation of the radar cross section.  The model then generates an RCS 

value for this sweep by selecting a random number from a normal distribution defined by 

the returned mean and standard deviation.  This number is sent to the model of figure E-1 

of appendix E in place of the RCS input block.  The model then calculates the maximum 

range of the radar for this RCS value.  The center blocks compare the maximum range of 

the radar with the current range of the target.  If the actual range is less, the target is 

detected.  Target detection is then set in the far right blocks of the model.  The lowest 

blocks of the model correct the aspect angle to a value of 0 to 360 degrees if it is 

negative.  The parameters of the simulation are captured in the blocks shown in figure L-

3. 
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Figure L-3 
Integrated Radar/Target Simulation Recording 
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The blocks of figure L-3 capture all the data parameters in an Excel spreadsheet.  The last 

two blocks at the far right delay the simulation for 2.5 seconds, the time between radar 

sweeps.  The aircraft is then routed back to the motion model for calculations of position 

and aspect angle for the next sweep.  This iterative looping continues until the end of the 

simulation. 

The simulation is now run over a period 16.67 minutes such that the aircraft 

moves toward the radar.  The radar does not move and is positioned at coordinates X=0, 

Y=0.  The F-16 radar track of the B-29 is shown in figure L-4. 
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Figure L-4 

Integrated Radar/B-26 Tracking Simulation 
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The simulation provides a realistic simulation of radar operation.  The target initially 

returns a few detections, then transitions to about half detections and half non detections 

and then finally moves in to a closer range where all returns are detections.  This real 

world phenomenon where a target fades in and out near the outer detection range is 

known as target scintillation. 

 A second target model was created for a 1/15 scale model of the Boeing 737 

commercial aircraft.  The radar cross section measurement at 10 GHz is shown in figure 

L-5. 

 

 

 
Figure L-514 

RCS Measurement of a 1/15 Scale B-737 Aircraft 

The data of figure L-5 was used to create a Bayesian Network model of the aircraft RCS 

using the software described in section 6.1.  The RCS model is shown in figure L-6. 

                                                           
14 Knott, Eugene, Shaeffer, John and Tuley, Michael, Radar Cross Section, Artech House Inc., Norwood 
MA, 1985, p. 181. 
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Figure L-6 

1/15 Scale B-737 Aircraft RCS Model 

A comparison of the model predictions with the test data is shown in figure L-7. 
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Figure L-7 
1/15 Scale B-737 Aircraft RCS Model/Test Comparison 

This model was then run in the integrated radar/RCS model over a different track to 

determine the detection range.  The results are shown in figure L-8. 
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Figure L-8 

Integrated Radar/1/15 Scale B-737 Tracking Simulation 

As can be seen in figure L-8, the detection range of the much smaller model is much less 

than the B-26 aircraft shown in figure L-4.  The RCS value determined by the Bayesian 

network model is shown as a function of the aspect angle is shown in figure L-9. 
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Figure L-9 

1/15 Scale B-737 RCS with Aspect Angle 

As can be seen in figures L-7, L-8 and L-9, the primary reason the radar can see the target 

as it passes the radar is not a function of target range, but the higher RCS value correctly 

modeled by the Bayesian network as the aspect angle of the target changes with target 

motion.  As the aircraft passes so that the radar is looking at the left side of the aircraft, 

the RCS increases dramatically just aft of the wing as shown in figures L-7 and L-9 

resulting in target detection.  As the aircraft passes on so that the aspect angle moves into 

the left rear quarter, the RCS falls and the detection is lost even though the aircraft 

continues to move closer to the radar. 
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L.2 Integrated Air Defense Decision Model 

 A final integrated model was created to demonstrate how influence diagrams can 

be tested and improved by allowing them to interact with a simulation.  The combat 

identification Bayesian network of figure L-10 was used as the starting point. 

 

 

 
Figure L-10 

Combat Identification Network15 

This Bayesian network uses seven attributes of a target to identify the type of air vehicle 

and determine whether it is hostile, neutral or friendly.  These attributes include the speed 

(Kinematics), Position relative to a commercial airway or specified return to force 

procedures, radio communications with the target (Comms), whether the contact has an 

Identify Friend or Foe (IFF) transponder turned on, Intelligence about the target, 

electronic signals (EW) being emitted by radar onboard the target, and any change in the 

                                                           
15 From [Laskey and Laskey, 2002].  Used with permission. 
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frequency of the radar return caused by a Doppler shift of the radar energy bouncing off 

the front of the engine (RSM).  This network was expanded into an influence diagram by 

adding a utility node and a decision node for recommending firing or not firing a weapon 

at a target that is detected by the radar.  The radar cross sections for three types of aircraft 

were then added for use with the equation-based radar model as shown in figure L-11. 

 

 

 
 

Figure L-11 
Baseline Air Defense Influence Diagram 

The decision whether to shot at an incoming target is a function of the probability that a 

target is hostile and the utilities assigned in figure L-12. 
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Figure L-12 
Shoot Decision Utility Values 

.  As can be seen from figure, the most favorable outcomes are to shoot at a hostile target 

while not shooting at neutral and friendly targets.  The most unfavorable outcomes are to 

not shoot at a hostile target while shooting at neutral and friendly targets. 

 The influence diagram of figure L-11 was then integrated into the equation-based 

model of figure L-1 through L-3.  The equation-based model first determined if the target 

would be detected by the radar.  If the target was detected, the values for nodes 

“Kinematics”, “Position” and “RSM” were determined by the speed, position and aspect 

angle of the target as calculated by the equation-based simulation.  Nodes “EW”, 

“Comms” and “IFF” were randomly determined by a random number generator set to 

realistic values for each type of aircraft.  Random errors were added to this data to test 

how well the network would work under realistic conditions.  For example, on the MIG-

29 EW node, there was a 50% chance the radar was on and identified as MIG-29, a 30% 
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chance it was either not on or not picked up, and a 5% chance that it was misclassified as 

each one of the other four options. 

 The model was then run for 1000 aircraft engagements to test how well the 

network could correctly identify the type aircraft and make a correct decision whether to 

recommend firing at the contact.  The results of these tests are shown in figure L-13. 
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Figure L-13 

Baseline Air Defense Influence Diagram Results 

The results of the simulation showed that the network had problems both correctly 

identifying the type of target and in the underlying policy of determining whether a target 

is hostile.  Although the network successfully identified and recommended firing at all 

incoming missiles, it also recommended firing at approximately 10% of the neutral 
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targets and a third of friendly aircraft.  This was caused by the conditional probabilities 

identifying the type of target.  The network also recommended firing at 75% of the MIG-

29 aircraft.  This demonstrates a policy error in the logic of the original network.  

Although one can define any inbound missile as a hostile threat, one would not fire at an 

aircraft just because it is a specific type. 

 The decision structure of figure L-11 was first modified by adding arcs from node 

“Identity” to nodes “EW” and “Kinematics”.  A new policy that a MIG-29 flying at the 

radar at speeds greater than 500 knots and with their radar on is considered to be hostile.  

Otherwise, these aircraft are neutral.  The influence diagram was cleared of all 

probabilities and utility values.  The equation-based model generated random aircraft 

engagements, but was modified to randomly make the shoot decision and then determine 

the utility of that decision.  Once all node states for the influence diagram were set, the 

probabilities and utility values were updated.  This allowed the influence diagram to learn 

by evaluating the outcome of each simulated engagement.  In this way, the influence 

diagram determined the unconditional and conditional probabilities for each natural node 

and which decisions had the most favorable outcomes.  The simulation was run 10,000 

times to determine the probabilities, utilities and optimal decisions. 

 The updated network was then integrated with the original simulation and run for 

another 1000 engagements.  The results are provided in figure L-14, 
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Figure L-14 

Simulation-Trained Air Defense Influence Diagram Results 

The network with revised decision policy and probabilities learned from simulation 

provided much better results.  The network correctly identified all incoming missiles and 

recommended a decision to shoot.  The network was now able to recognized 100% of all 

types of neutral and friendly aircraft and recommended not shooting in all cases.  The 

MIG-29 was also correctly identified and a shoot decision was recommended in the 27% 

of cases were the aircraft made a high speed run at the radar position with its radar on. 

 This example demonstrates the advantages of integrating equation-based models 

with influence diagram in simulations.  The equation-based portion of the model can be 

used to determine the input states of the nodes of the influence diagram.  In this example, 
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the model generated random starting points, headings and airspeeds for each target.  The 

equations of motion and the capabilities of the radar determined at what position and 

aspect angle the target appeared on the radar.  This information then determined whether 

the target was detected.  This approach provides more realistic input scenarios than using 

random number inputs for the variables.  The influence diagram can then make decisions 

which are fed back to and effect the simulation.  In this case, the returned decision was 

whether to shoot at the radar contact.  Although not implemented in this example, an 

equation or Bayesian network model of a weapon could be implemented to continue the 

simulation.  Integrated simulation can also be used to test decision policy and to 

determine the probability tables of natural nodes.  For complex decisions, integrated 

simulation can show whether the desired results are obtained for the given inputs.  This is 

particularly important in cases were inputs are either incorrect or not available.  Provided 

the simulation is representative of the real world, an influence diagram can be trained and 

tested prior to implementation. 
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M. Robotic Vehicle Models 

 

 The robotic vehicle models are a virtual representation of a robotic car 

constructed from the Lego™ MindStorms® Robotics Invention System.  The baseline 

vehicle is shown in figure M-1. 

 

 

 
 

Figure M-1 
Baseline Robotic Vehicle 

 
An equation-based model was created to predict the speed of the vehicle.  The selection 

and input sections of the model are presented in figure M-2.
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Figure M-2 

Robotic Vehicle Equation Model Inputs 

The model elements on the left side are the input variables.  The top two switches allow 

the model to run using either alkaline or nickel-cadmium batteries and to attach or detach 

a 1.5 pound sled for towing speed prediction.  The calculations in figure M-2 find the 

vehicle drag and the sled drag. 
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 The motor portion of the model is presented in figure M-3. 
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Figure M-3 

Robotic Vehicle Equation Motor Model 

The top portion of figure M-3 calculates the maximum torque output of the motor based 

on the type of battery selected.  The lower portion of the model calculates parameters 

used in the RPM calculations.  The final portion of the model is shown in figure M-4. 
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Figure M-4 
Robotic Vehicle Equation Speed Model 

The first portion of figure M-4 calculates the RPM of the motor.  If the torque load is 

greater than the maximum torque from the motors, the RPM is zero.  The final portion 

calculates the final vehicle speed based on the RPM, gear ratio and wheel size. 

 Equation model predictions were run for three different configurations.  The kit 

used to construct the car has some variation among the parts.  The test area carpet also 

did not have uniform friction over the surface.  It was assessed that these values could 

vary up to 10% in value.  These elements were modeled as normally distributed random 

variables with the mean set to the average value and standard deviation of 3.3% of the 

mean.  Battery voltage accounts for the largest variation in system performance.  Battery 

voltage was tested with the results presented in figure M-5. 
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Figure M-5 

Battery Test Data 

The battery voltage was modeled as a random variable based on a normal distribution of 

the test data.   

System performance predictions were made using Monte Carlo simulation 

varying the gear drag, sled drag and battery voltage over the range of values.  The 

prediction probability distribution was then compared to a normal distribution of test data 

taken for four different configurations.  These comparisons are presented in figures M-6 

through M-9. 



347 

  
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

60 70 80 90 100 110

Speed (ft/sec)

Pr
ob

ab
ili

ty

Equation Model
Test Data

 
 
 

Figure M-6 
Ni-Cd Battery, Power 8, No Sled Performance 
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Figure M-7 

Alkaline Battery, Power 8, No Sled Performance 
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Figure M-8 

Alkaline Battery, Power 8, Sled Attached Performance 
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Figure M-9 

Alkaline Battery, Power 5, No Sled Performance 
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 In figure M-6, the test data may appear somewhat skewed from the prediction.  

However, this is not the case since this test was conducted with a freshly charged set of 

batteries.  The data from such a sample set would be expected to fall within the upper tail 

of the predictive distribution, which is exactly where it falls.  The data in figures M-6 

through M-8 provide a reasonable match to the predictions, validating that the equation 

model is an accurate virtual representation of the robotic vehicle. 

 A different motor was obtained for the vehicle.  The motor was tested to obtain 

the RPM as a function of torque load, battery type and power setting.  A Bayesian 

network of the motor was constructed for the new motor.  The test results were used to 

create the probability tables.  The motor network model is shown in figure M-10. 

 

 

 
Figure M-10 

Motor Bayesian Network Model 
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The network used a non-uniform prior for probability learning to reduce any errors from 

bins with no data. 

 The robotic vehicle was modified as shown in figure M-11. 

 

 

 
 

Figure M-11 
Modified Robotic Vehicle 

The new motors were much larger in size than the original motors.  As a result, the drive 

train had to be changed from the gear driven system of figure M-1 to a pulley and belt 

drive system in figure M-11.  The drive and axle pulley sizes were adjusted in the model.  
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The engine model of figure M-3 was then removed and replaced with the Bayesian 

network interface blocks shown in figure M-12. 
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Figure M-12 
Modified Robotic Vehicle Bayesian Network Model Integration 

The elements of figure M-12 set the power and torque load calculated by the equation-

based portions of the models as attributes and then opens and compiles the network of 

figure M-10.  The battery type, power level and torque load variable states are passed to 

the network and the mean and standard deviation of the motor RPM is returned.  Because 

the model uses a Monte Carlo method to create a probability distribution for the output 

prediction, the mean and standard deviation are input to a random number generator 

using a normal distribution of RPM. 

 The modified model was run to create a probability distribution prediction of the 

robotic vehicle with the new motor and drive train.  The modified robotic car was then 

tested under the same conditions as figures M-6 through M-9.  Multiple tests were 

conducted to create a probability distribution.  The model correctly predicted, and test 

data confirmed, that the robotic vehicle could not tow the sled in the modified 

configuration.  The other three conditions are presented in figures M-13 through M-15. 
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Figure M-13 

Modified Vehicle, Alkaline Battery, Power 8, No Sled Performance 
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Figure M-14 

Modified Vehicle, Ni-Cd Battery, Power 8, No Sled Performance 
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Figure M-15 

Modified Vehicle, Alkaline Battery, Power 5, No Sled Performance 

As can be seen in figures M-13 through M-15, the test data distribution fell within the 

limits of the prediction in all 3 cases, as well as correctly predicting that there was 

insufficient power to tow the sled. 
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